Modelling initial mortality of Abies religiosa in a crown fire in Mexico

Salomé Temiño-Villota, Dante A. Rodríguez-Trejo, Domingo M. Molina Terrén, Kevin Ryan


Aim of study: The objectives of this work were to determine which morphological and fire severity variables may help explain the mortality of adult Abies religiosa (Kunth) Schltdl. & Cham., to model the probability of this species after being affected by crown fire, and to obtain more elements to classify the sacred fir in terms of fire resistance. This type of studies are relevant to estimate the impact of crown fires on the climax forests that forms this species.

Area of study: The burned forest was located in the southern Mexico City, borough.

Material and methods: Morphological variables and fire severity indicators were collected for 335 Abies religiosa trees burned by a mixed severity fire. Logistic regression was used to analyze data and develop models that best explained tree mortality.

Main results: Survival was 26.9%. The models for height (p≤0.0001), diameter at breast height (p=0.0082), crown length (p≤0.0001) and crown base height (p≤0.0001) were significant, with a negative relationship between each one of these variables and probability of mortality. The significant severity variables were lethal scorch height (p≤0.0001) and crown kill (p≤ 0.0001), which have a direct relationship with probability of mortality.

Highlights: This species is moderately fire-resistant. Crown kill ≥ 70% markedly increases mortality. Silvicultural activities such as pruning, thinning and fuel management can reduce the risk of crown fires.


Crown kill; crown scorch; forest fires; mixed fires; sacred fir; wildfire

Full Text:




Alexander ME, 1988. Help with making Crown fire hazard assessments. In 'Proceedings Protecting people and homes from wildfire in the Interior West' (Fischer W, Arno SF, comps). USDA Forest Service, Intermountain Research Station General Technic Report 251, Ogden, UT, USA. pp: 147-156.

Ángeles C EL, López M, 2009. Supervivencia de una cohorte de plántulas de Abies religiosa bajo diferentes condiciones post-incendio. Bol Soc Bot Méx 84: 25-33.

Bevins CD, 1980. Estimating survival and salvage potential of fire-scarred Douglas-fir. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Note INT-RN-287. Ogden, UT, USA. 8 pp.

Botelho HS, Fernandes P, Loureiro C, Rego F, 1998. Growth response of maritime pine (Pinus pinaster) trees to high-intensity prescribed fires. Proc 3rd International Conference Forest Fire Research and 14th Fire and Forest Meteorology Conference ADAI', Luso (Portugal), November 16-20 1998. pp. 1863-1873.

Bond WJ, Midgley JJ, 2001. Ecology of sprouting in woody plants: the persistence niche. Trends in Ecol Evol 16: 45-51.

Bond WJ, Midgley JJ, 2003. The Evolutionary Ecology of Sprouting in Woody Plants. Int J Plant Sci 164(S3): S103-S114.

Brower LP, Malcolm SB, 1991. Animal Migrations: Endangered Phenomena. Am Zool 31: 265-276.

Brower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramírez MI, 2012. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Cons Div 5: 95–100.

Burrows GE, 2002. Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae)—implications for fire resistance and recovery. New Phytol 153: 111–131.

Burrows GE, Hornby SK, Waters DA, Bellairs SM, Prior LD, Bowman DMJS, 2010. A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome—implications for adaptation to fire. Aust J Bot 58: 493–507.

Byram GM, 1959. Combustion of forest fuels. In: Forest Fire. Control and Use'. (Davis, KP, ed). McGraw Hill, New York. pp: 61-89.

Challenger A, Soberón J, 2008. Los ecosistemas terrestres. In: Capital Natural de México. Vol. I: Conocimiento actual de la biodiversidad. (Sarukán, J, coord). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D. F. pp: 87-108.

CORENA (Comisión de Recursos Naturales). 2012. Reporte oficial de incendios forestales. CORENA, México, D. F. Work document for internal use.

Creber GT, Collinson ME, 2006. Epicormic shoot traces in the secondary xylem of the triasic and Permian fossil conifer species Woodworthia arizonica – Short Communication. IAWA.

Crisp MD, Burrows GE, Cook LG, Thornhill TH, Bowman DMJS, 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nature Communications 2: 193.

Decombeix AL, Taylor EL, Taylor TN, 2010. Epicormic shoots in a Permian gymnosperm from Antarctica. Int J Plant Sci 171: 772–782.

Farjon A, 2010. A Handbook of the World's Conifers. Brill Academic, Leiden. 1150 pp.

Fowler JF, Sieg CH, 2004. Postfire mortality of Ponderosa Pine and Douglas-fir. A review of methods to predict tree death. USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-132. Fort Collins, CO, USA. 25 pp.

González-Rosales A, Rodríguez-Trejo DA, 2004. Efecto del chamuscado de copa en el crecimiento en diámetro de Pinus hartwegii Lindl. en el Distrito Federal, México. Agrociencia 38: 537-544.

González GJM, Musálem S MA, Zárate del L G, Velázquez M A, 1991. Estudio de la germinación del oyamel (Abies religiosa (H.B.K.) Schl. et Cham.) en condiciones naturales en Zoquiapan, México. Rev Chapingo Serie Cie For Amb 15: 59-66.

Hanson CT, North MP, 2006. Post-fire epicormic branching in Sierra Nevada Abies concolor (white fir). Int J Wildland Fire 15: 31-35.

Hood SM, 2010. Mitigating old tree mortality in long-unburned, fire-dependent forest: A synthesis. USDA Forest Service, Rocky Mountain Research Station RMRS-GTR-238. Fort Collins, CO, USA. 71 pp.

Hosmer DW, Lemeshow S, 2000. Applied Logistic Regression. Wiley, New York. 375 pp.

Johansen RW, 1975. Prescribed burning may enhance growth of young slash pine. J Forest 73: 148-149.

Karmalkar AV, Bradley RS, Diaz HF, 2011. Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dynam 37: 605-629.

Keeley JE, 2012. Ecology and evolution of pine life histories. Ann For Sci 69: 445-453.

Lanner RM, 2002. Viewpoint: Why do trees live so long? Aging Res Rev 1: 653–671.

Lara G R, Sánchez V LR, Corral A J, 2009. Regeneration of Abies religiosa in canopy gaps versus understory, Cofre de Perote National Park, México. Agrociencia 43: 739-747.

Larsen DR, Hann DW, 1985. Equations for predicting diameter and squared diameter inside bark at breast height for six major conifers of southwest Oregon. Oregon State University, Forest Research Laboratory Research Note 77. Corvallis, OR, USA. 7 pp.

Madrigal-Sánchez X, 1967. Contribución al conocimiento de la ecología de los bosques de oyamel (Abies religiosa (HBK) Schl. & Cham.) en el Valle de México. Instituto Nacional de Investigaciones Forestales, Boletín Técnico 18, México, D. F. 94 pp.

Maga-a V, Conde C, Sanchez O, Gay C, 1997. Assessment of current and future regional climate scenarios for Mexico. Clim Res 9: 107-114.

Mayerle BC, 1992. Effects of wood smoke and tree shaking on overwintering monarch butterfly (Danaus plexippus) clusters. PhD thesis, California Polytechnic State University, CA, USA.

McHugh CW, Kolb TE, Wilson JL, 2003. Bark beetle attacks on ponderosa pine following fire in northern Arizona. Environ Entomol 32(3): 510-522.

Meier A, Saunders MR, Michler CH, 2012. Epicormic buds in trees: a review of bud establishment, development and dormancy release. Tree Physiol 32: 565-584.

Miller M, 2000. Fire autecology. In: Wildland Fire in Ecosystems: Fire on Flora (Brown JK, Smith JK, eds). USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-42, Vol. 2. Fort Collins, CO, USA. pp: 9-34.

Narakawa Y, Yamamoto IS, 2001. Gap formation, microsite variation and the conifer seedling occurrence in a subalpine old-growth forest, Central Japan. Ecol Res 16: 617-625.

Peterson DL, Ryan KC, 1986. Modeling postfire conifer mortality for long-range planning. Environ Manage 10: 797-808.

Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier, RH, Stockwell DRB, 2002. Future projections for Mexican faunas under global climate change scenarios. Letters to Nature. Nature 416: 626-629.

Ramírez MI, Azcárate JG, Luna L, 2003. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For Chronicle 79: 242-246.

Rodríguez-Trejo DA, 1996. Incendios Forestales. Mundi Prensa, UACH, México, D. F. 630 pp.

Rodríguez-Trejo DA, 2001. Ecología del fuego en el ecosistema de Pinus hartwegii Lindl. Rev Chapingo Serie Cie For Amb 7: 145-151.

Rodríguez-Trejo DA, 2006. Ecología del fuego en bosques de coníferas. In: Incendios Forestales (Flores-Garnica, JG, Rodríguez-Trejo, DA, Estrada-Murrieta, O, Sánchez-Zárraga, F) Mundi Prensa, CONAFOR, México, D. F. pp: 41-56.

Rodríguez-Trejo DA, 2007. Fuego. In: Enfermedades Forestales en México. (Cibrián-Tovar, D, Alvarado-Rosales, D, García-Díaz, SE, eds) UACH, CONAFOR, USDA FS, CFS, NRC, COFAN, Chapingo, Edo. de México. pp: 42-50

Rodríguez-Trejo DA, 2008. Fire regimes, fire ecology, and fire management in Mexico. Ambio 37: 542-547.

Rodríguez-Trejo DA, PZ Fulé, 2003. Fire ecology of Mexican pines and a fire management proposal. Int J Wildland Fire 12: 23-37.

Rodríguez-Trejo DA, Rodríguez-Aguilar M, Fernández-Sánchez F, Pyne SJ, 2000. Educación e Incendios Forestales. Mundi Prensa, México, D. F. 201 pp.

Rodríguez-Trejo DA, Castro-Solís UB, Zepeda-Bautista EM, Carr RJ, 2007. First year survival of Pinus hartwegii Lindl. in burned areas in different times. Int J Wildland Fire 16: 54-62.

Ryan KC, 1982. Techniques for assessing fire damage to trees. Proc Symposium Fire, its Field Effects. Missoula, MT (USA), October 19-21, 1982, pp. 1-11.

Ryan KC, 1990. Predicting prescribed fire effects on trees in the interior west. Proc Interior West Fire Council Annual Meeting and Workshop: The Art and Science of Fire Management, Kananaskis Village, Alberta (Can). October 24-27, 1988. pp. 148-162.

Ryan KC, Reinhardt ED, 1988. Predicting postfire mortality of seven western conifers. Canadian J Forest Res 18: 1291-1297.

Ryan KC, Rigolot E, Rego FC, Botelho H, Vega JA, Fernandes PM, Sofronova TM, 2010. Prescribed fire applications in forest and woodlands: Integration of models and field studies to guide fire use. Proc. 3rd Fire Behavior and Fuels Conference. Spokane, WA (USA). October 25-29, 2010.

Rzedowski J, 1978. Vegetación de México. Limusa, México, D. F. 430 pp.

Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA, 2012. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecol Manag 275: 98–106.

Sánchez V LR, Pineda L M del R, Hernández M A, 1991. Distribución y estructura de la población de Abies religiosa (H.B.K.) Sch. et Cham., en el cofre de Perote, estado de Veracruz, México. Acta Bot Mex 16: 45-55.

Schwilk DW, Knapp EE, Ferrenberg SM, Keeley JE, Caprio AC, 2006. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest. Forest Ecol Manag 232: 36–45

Sieg CH, McMillin JD, Fowler JF, Allen KK, Negron JF, Wadleigh LL, Anhold JA, Gibson KE, 2006. Best Predictors for Postfire Mortality of Ponderosa Pine Trees in the Intermountain West. Forest Sci 52: 718-728.

Stephens SL, Finney MA, 2002. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: effects of crown damage and forest floor combustion. Forest Ecol Manag 162: 261–271.

Toone W, Hanscom T, 2003. Conservation of Monarch Butterflies in Central Mexico: Protection of a biological phenomenon. Biodiversity 4: 14-20.

van Mantgem PJ, Stephenson NL, Mutch LS, Johnson VG, Esperanza AM, Parsons DJ, 2003. Growth rate predicts mortality of Abies concolor in both burned and unburned stands. Can J Forest Res 33: 1029–1038.

van Mantgem PJ, Schwartz M, 2003. Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecol Manag 178: 341–352.

van Mantgem PJ, Nesmith JCB, Keifer MB, Brooks M, 2013. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States. Forest Ecol Manag 289: 463–469.

van Wagner CE, 1977. Conditions for the start and spread of crown fire. Can J Forest Res 7: 23-34.

Vera-Vilchis V, Rodríguez-Trejo DA, 2007. Supervivencia e incremento en altura de Pinus hartwegii a dos a-os de quemas prescritas e incendios experimentales. Agrociencia 41: 219-230.

Villers-Ruiz, L, Trejo-Vazquez, I, 1997. Assessment of the vulnerability of forest ecosystems to climate change in Mexico. Clim Res 9: 87-93

Villers-Ruiz L, Trejo-Vazquez I, 1998. Climate change on Mexican forests and natural protected areas. Global Environ Chang 8: 141-157.

Vos CC, Berry P, Opdam P, Braveco H, Nijhof B, Hanley JO, Bell C, Kuipers H, 2008. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45: 1722–1731.

Wade DD, 1983. Fire management in the slash pine ecosystem. In: Proc. of the Managed Slash Pine Ecosystem. University of Florida, Gainesville, Florida (USA). pp. 203-227.

Warren R, Johnson EW, 1988. A guide to the firs (Abies spp.) of the Arnold Arboretum. Arnoldia 48: 2-49.

Woolley T, Shaw DC, Ganio LM, Fitzgerald S, 2012. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. Int J Wildland Fire 21: 1–35.

DOI: 10.5424/fs/2016251-06887