Response of European yews to climate change: a review

Peter Thomas, Xavier Garcia-Marti

Abstract


Aim of study: Being the longest-lived of all European trees, capable of living significantly over 2,000 years, yew is highly likely to be negatively affected by climate change; this paper explores the changes in distribution and abundance. 

Main results: Yew is unlikely to migrate north due to its slow rate of invasion, its disjunct soil needs and an inability to cope with the expected rate of climate change. It will, however, retreat from the southern end of its range in Spain due to increased evapotranspiration allied to reduced rainfall. In the south, increased drought will be exacerbated by extreme drought and increased fire frequency. In drier areas at the northern edge of its range, yew will decline where growing on well-drained limestone outcrops with little shelter from the sun (increased evaporation) and reduced water availability due to limited root spread.  On wetter northern sites, yew should find better climatic conditions but will be slow to invade new areas due to poorer reproduction affected by reduced pollen production, population fragmentation and limited seed movement. Overall, without our intervention, yew will survive by inertia in the short-term but eventual become extinct in most areas. Of equal concern will be the loss of old veteran individuals and associated biodiversity. 

Research highlights: There is an urgent need for interventionist management for both old and young trees, relieving the stress on old veteran trees, and planting and maintaining seedlings through vulnerable young age. A list of management priorities is given.

Keywords: Yew; Taxus baccata; Temperature; Precipitation; Seedlings; Bioclimate envelope; Species range.


Full Text:

PDF HTML XML

References


References

AEMET - Agencia Estatal de Meteorología, 2014. http://www.aemet.es/es/noticias/2014/10/hidrologico2013-2014. [5 January 2015]

Alcober JA, Sanchís E, Crespo MB, 1988. Distribución y autoecología del tejo (Taxus baccata L.) en la provincia de Valencia. Ecología 2: 131-138.

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH et al., 2009. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manage 259: 660-684. http://dx.doi.org/10.1016/j.foreco.2009.09.001

Allison TD, 1990. Pollen production and plant density affect pollination and seed production in Taxus canadiensis. Ecology 71: 516-522. http://dx.doi.org/10.2307/1940305

Bonan, GB, 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444-1449. http://dx.doi.org/10.1126/science.1155121

Brzeziecki B, Kienast F, 1994. Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecol Manag 69: 167-187. http://dx.doi.org/10.1016/0378-1127(94)90227-5

Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM, 2105. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103: 44-57. http://dx.doi.org/10.1111/1365-2745.12295

Carvalho A, Rebelo A, Dias J, 1999. Distribution and natural regeneration of yew trees in the National Parks of Peneda-Geres (Portugal) and Baixa Limia Serra-Xures (Spain). Rev Biol 17: 43-49.

Caughley G, 1994. Directions in conservation biology. J Anim Ecol 63: 215-244. http://dx.doi.org/10.2307/5542

Cedro A, Iszkuło G, 2011 Do females differ from males of European yew (Taxus baccata L.) in dendrochronological analysis? Tree-Ring Res 67: 3-11. http://dx.doi.org/10.3959/2009-9.1

Charco J, 2007. El tejo en el norte de África. In: El tejo en el Mediterráneo Occidental (Serra L, ed). Conselleria de Territori i Habitatge. Ministerio de Medio Ambiente de España. CAM. : pp: 177-185.

Cortés S, Vasco F, Blanco E, 2000. El libro del tejo. Ed. Arba. Madrid, España.

Costa JC, 2007. Distribución y ecología de las tejedas en Andalucía: Propuesta de ctuaciones de conservación, regeneración y restauración. In: El tejo en el Mediterráneo Occidental (Serra L, ed). Conselleria de Territori i Habitatge. Ministerio de Medio Ambiente de España. CAM. pp:161-171.

Devaney JL, Jansen MAK, Whelan PM 2014 Spatial patterns of natural regeneration in stands of English yew (Taxus baccata L.); Negative neighbourhood effects. Forest Ecol Manag 321: 52-60. http://dx.doi.org/10.1016/j.foreco.2013.06.060

Dhar A, Ruprecht H, Klumpp R, Vacik H, 2006. Stand structure and natural regeneration of English yew (Taxus baccata L.) at Stiwollgraben in Austria. Dendrobiology 56: 19-26.

Dhar A, Ruprecht H, Klumpp R, Vacik H, 2007. Comparison of ecological condition and conservation status of English yew population in two Austrian gene conservation forests. J Forest Res 18: 181-186. http://dx.doi.org/10.1007/s11676-007-0037-5

Dubreuil M, Sebastiani F, Mayol M, González-Martínez SC, Riba M, Vendramin GG, 2008. Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L. Conserv Genet 9:1665-1668. http://dx.doi.org/10.1007/s10592-008-9515-3

Elwes HJ, Henry A, 1906. The Trees of Great Britain and Ireland. Privately printed, Edinburgh, UK. http://dx.doi.org/10.5962/bhl.title.53977

European Commission, 2007. Interpretation manual of European Union Habitats – EUR27. DG Environment, European Commission.

Fahrig L, 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12: 346–353.

Fahrig L, 2003. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34: 487–515. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419

Farris E, Filigheddu R, 2008. Effects of browsing in relation to vegetation cover on common yew (Taxus baccata L.) recruitment in Mediterranean environments. Plant Ecol 199: 309-318. http://dx.doi.org/10.1007/s11258-008-9434-x

Fernández-Manso O, Fernández-Manso A, Santamaría E, Quintano C, 2011. Análisis territorial de la Tejedas de Castilla y León (España). SJRD 2: 69-80.

Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S, Leite AB, Labecca F, Ribeiro T, Carvalho CS, Collevatti RG, et al., 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340: 1086-1090. http://dx.doi.org/10.1126/science.1233774

García-Martí X, Ferrer P, 2013. La creación de núcleos de dispersión – reclamo como modelo de restauración ecológica forestal. In: Avances en la restauración de sistemas forestales. Técnicas de implantación (Martínez-Ruiz C, Lario FJ, Fernández-Santos B, eds.) SECF-AEET, Madrid, España. pp: 149-159.

García D, Obeso JR, 2003. Facilitation by herbivore-mediated nurse plants in a threatened tree, Taxus baccata: local effects and landscape level consistency. Ecography 26: 739-750. http://dx.doi.org/10.1111/j.0906-7590.2003.03601.x

García D, Zamora R, Hódar JA, Gómez JM, Castro J, 2000. Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol Cons 95: 31-38. http://dx.doi.org/10.1016/S0006-3207(00)00016-1

Grubb PJ, 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107-145. http://dx.doi.org/10.1111/j.1469-185X.1977.tb01347.x

Hageneder F, 2007. Yew a history. Sutton Publishing, Stroud, Gloucestershire, UK.

Hamidouche-Si MC, Bouahmed A, Vesella F, Krouchi F, Arezki D, 2014. Geographic distribution and morphological variation of Taxus baccata in Algeria. Der Eibenfr 20: 39-53.

Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann KE, 2013. Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3: 203-207. http://dx.doi.org/10.1038/nclimate1687

Harper JL, 1977. Population biology of plants. Academic Press, London, UK.

Hättenschwiler S, 2001. Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129: 31-42. http://dx.doi.org/10.1007/s004420100699

Hättenschwiler S, Körner C, 2000. Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Glob Change Biol 6: 213-226. http://dx.doi.org/10.1046/j.1365-2486.2000.00301.x

IPCC, 2013. Climate change 2013. The physical science basis. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.

Iszkuło G, 2010. Success and failure of endangered tree species: low temperatures and low light availability affect survival and growth of European yew (Taxus baccata L.) seedlings. Pol J Ecol 58: 259-271.

Iszkuło G, Boratyński A, 2006. Analysis of the relationship between photosynthetic photon flux density and natural Taxus baccata seedlings occurrence. Acta Oecol 29: 78-84. http://dx.doi.org/10.1016/j.actao.2005.08.001

Iszkuło G, Didukh Y, Giertych MJ, Jasińska AK, Sobierajska K, Szmyt J, 2012. Weak competitive ability may explain decline of Taxus baccata. Ann For Sci 69: 705–712. http://dx.doi.org/10.1007/s13595-012-0193-4

Iszkuło G, Jasińska AK, Giertych MJ, Boratyński A, 2009. Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata? Plant Ecol 200: 229-240. http://dx.doi.org/10.1007/s11258-008-9447-5

Jordano P, García C, Godoy JA, García-Castaño JL, 2007. Differential contribution of frugivores to complex seed dispersal patterns. PNAS 104: 3278-3282. http://dx.doi.org/10.1073/pnas.0606793104

Kassioumis K, Papageorgiou K, Glezakos T, Vogiatzakis IN, 2004. Distribution and stand structure of Taxus baccata populations in Greece; Results of the first national inventory. Ecologia Medit 30: 159-170.

Katsavou I, Ganatsas P, 2012. Ecology and conservation status of Taxus baccata population in NE Chalkidiki, northern Greece. Dendrobiology, 68: 55-62.

Krosby M, Tewksbury J, Haddad N M, Hoekstra J, 2010. Ecological connectivity for a changing climate. Conserv Biol 24: 1686-1689. http://dx.doi.org/10.1111/j.1523-1739.2010.01585.x

Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Roda F et al., 2009. Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24: 564-571. http://dx.doi.org/10.1016/j.tree.2009.04.011

Lange OL, 1961. Die Hitzeresistenz einheimischer immerund wintergrüner Pflanzen im Jahreslauf. Planta 56: 666-683. http://dx.doi.org/10.1007/BF01928210

Ledig FT, 1986. Heterozygosity, heterosis, and fitness in outbreeding plants. In: Conservation biology: the science of scarcity and diversity (Soule M-E, ed). Sinauer, Sunderland, Massachusetts, USA. pp: 77-104.

Lewandowski A, Burczyk J, Mejnartowicz L, 1995. Genetic structure of English yew (Taxus baccata L.) in the Wierzchlas Reserve: implications for genetic conservation. Forest Ecol Manag 73: 221-227. http://dx.doi.org/10.1016/0378-1127(94)03477-E

Linares JC, 2013. Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). Forest Ecol Manag 291: 119-127. http://dx.doi.org/10.1016/j.foreco.2012.11.009

Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD, 2009. The velocity of climate change. Nature 462: 1052-1055. http://dx.doi.org/10.1038/nature08649

Martínez I, Taboada FG, Wiegand T, Obeso JM, 2013. Spatial patterns of seedling-adult associations in a temperate forest community. Forest Ecol Manag 296: 74-80. http://dx.doi.org/10.1016/j.foreco.2013.02.005

Melzack RN, Watts D, 1982. Variations in seed weight, germination, and seedling vigour in the yew (Taxus baccata L.) in England. J Biogeogr 9: 55-63. http://dx.doi.org/10.2307/2844730

Mendoza I, Gómez-Aparicio L, Zamora R, Matías L, 2009a. Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci 20: 367-376. http://dx.doi.org/10.1111/j.1654-1103.2009.05705.x

Mendoza I, Zamora R, Castro J, 2009b. A seeding experiment for testing tree community recruitment under variable environments: implications for forest regeneration and conservation in Mediterranean habitats. Biol Conserv 142: 1491-1499. http://dx.doi.org/10.1016/j.biocon.2009.02.018

Mercuri AM, Torri P, Casini E, Olmi L, 2013. Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy). Plant Biol 15 (Suppl. 1): 70-82. http://dx.doi.org/10.1111/j.1438-8677.2012.00624.x

Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ, 2014. Convergence of terrestrial plant production across global climate gradients. Nature 512: 39-43. http://dx.doi.org/10.1038/nature13470

Myking T, Vakkari P, Skrøppa T, 2009. Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. Forestry 82: 529-539. http://dx.doi.org/10.1093/forestry/cpp022

Obeso JR, 2002. The costs of reproduction in plants. New Phytol 155: 321-348. http://dx.doi.org/10.1046/j.1469-8137.2002.00477.x

Ozolinčius R, Lekevičius E, Stakėnas V, Galvonaitė A, Samas A, Valiukas D, 2014. Lithuanian forests and climate change: possible effects on tree species composition. Eur J For Res 133: 51-60. http://dx.doi.org/10.1007/s10342-013-0735-9

Packham JR, Thomas PA, Atkinson MD, Degen T, 2012. Biological flora of the British Isles Fagus sylvatica L. J Ecol 100: 1557-1608. http://dx.doi.org/10.1111/j.1365-2745.2012.02017.x

Pausas JG, 2004. Changes in fire and climate in the eastern Iberian Peninsula. Clim Change 63: 337-350. http://dx.doi.org/10.1023/B:CLIM.0000018508.94901.9c

Pearson RG, Dawson TP, 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12: 361-371. http://dx.doi.org/10.1046/j.1466-822X.2003.00042.x

Pearson RG, Dawson TP, Berry PM, Harrison PA, 2002. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154: 289-300. http://dx.doi.org/10.1016/S0304-3800(02)00056-X

Peñuelas J, Filella I, Piñol J, Siscart D, Lloret, F, 2000. Effects of a severe drought on water and nitrogen use by Quercus ilex and Phillyrea latifolia. Biol Plantarum 43: 47-53. http://dx.doi.org/10.1023/A:1026546828466

Peñuelas J, Ogaya R, Boada M, Jump AS, 2007. Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain) Ecography 30: 829-837. http://dx.doi.org/10.1111/j.2007.0906-7590.05247.x

Piñol J, Terradas J, Lloret F, 1998. Climate warming, wildfire hazard and wildfire occurrence in coastal Eastern Spain. Clim Change 38: 345-357. http://dx.doi.org/10.1023/A:1005316632105

Piovesan G, Presutti Saba E, Biondi F, Alessandrini A, Di Filippo A, Schirone B, 2009. Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies. Plant Ecol 205: 23-46. http://dx.doi.org/10.1007/s11258-009-9596-1

Pisek A, Larcher W, Moser W, Pack I, 1969. Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhangigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora 158: 608-630.

Preston CD, Pearman DA, Dines TD 2002. New atlas of the British and Irish flora. Oxford University Press, Oxford, UK.

Rodwell JS, 1991. British plant communities. Vol. 1 Woodlands and scrub. Cambridge University Press, Cambridge, UK.

Ruprecht H, Dhar A, Aigner B, Oitzinger G, Klumpp R, Vacik H, 2010. Structural diversity of English yew (Taxus baccata L.) populations. Eur J For Res 129: 189-198. http://dx.doi.org/10.1007/s10342-009-0312-4

Sanz R, Pulido F, Nogués-Bravo D, 2009. Predicting mechanisms across scales: amplified effects of abiotic constraints on the recruitment of yew Taxus baccata. Ecography 32: 993-1000. http://dx.doi.org/10.1111/j.1600-0587.2009.05627.x

Saura S, Martín-Queller E, Hunter ML, 2014. Forest landscape change and biodiversity conservation. In: Forest landscapes and global change: challenges for research and management (Azevedo JC, Perera AH, Pinto MA, eds). Springer, Berlin (Germany). pp: 167-198. http://dx.doi.org/10.1007/978-1-4939-0953-7_7

Schwendtner O, 2011. Supervivencia y crisis del tejo (Taxus baccata L) en el área cantábrica. In: II Jornadas del Tejo en el Mediterráneo Occidental (Caritat A, ed). Delegació en la Garrotxa de la Institució Catalana de Historia Natural i Fundació Estudis Superiors d'Olot (Girona, Spain). pp: 43-49.

Seidling W, 1999. Spatial structures of a subspontaneous population of Taxus baccata saplings. Flora 194: 439-451.

Serra L, Garcia-Martí X, 2011. Distribución del tejo en España. In: II Jornadas del Tejo en el Mediterráneo Occidental (Caritat A, ed). Delegació en la Garrotxa de la Institució Catalana de Historia Natural i Fundació Estudis Superiors d'Olot (Girona, Spain). pp:17-43.

Svenning J-C, Magård E, 1999. Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol Conserv 88: 173-182. http://dx.doi.org/10.1016/S0006-3207(98)00106-2

Svenning J-C, Skov F, 2004. Limited filling of the potential range in European tree species. Ecol Lett 7: 565-573. http://dx.doi.org/10.1111/j.1461-0248.2004.00614.x

Sykes MT, Prentice IC, Cramer W, 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23: 203-233.

Thomas PA, 2014. Trees: their natural history (2nd ed). Cambridge University Press, Cambridge, UK.

Thomas PA, Polwart A, 2003. Biological flora of the British Isles. Taxus baccata L. J Ecol 91: 489-524. http://dx.doi.org/10.1046/j.1365-2745.2003.00783.x

Till O, 1956. Über die Frosthärte von Pflanzen sommergrüner Laubwälder. Flora 143: 499-542.

Tittensor RM, 1980. Ecological history of yew Taxus baccata L. in southern England. Biol Conserv 17: 243-265. http://dx.doi.org/10.1016/0006-3207(80)90026-9

Voliotis D, 1986. Historical and environmental significance of the yew (Taxus baccata L.). Israel J Bot 35, 47-52.

Watt AS, 1926. Yew communities of the South Downs. J Ecol 14: 282-316. http://dx.doi.org/10.2307/2256022

Williamson R, 1978. The great yew forest – the natural history of Kingley Vale. Macmillan, London, UK.

Zhu K, Woodall CW, Clark JS, 2012. Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18: 1042-1052. http://dx.doi.org/10.1111/j.1365-2486.2011.02571.x




DOI: 10.5424/fs/2015243-07465

Webpage: www.inia.es/Forestsystems