Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

Lobna Zribi, Hatem Chaar, Abdelhamid Khaldi, Belgacem Henchi, Florent Mouillot, Fatma Gharbi

Abstract


Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado) and an aged cork oak forest (undisturbed forest) as well as its distribution among the different pools (tree, litter and soil).

Area of study. The north west of Tunisia

Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables.

Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest). Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1) was estimated to be113.61(27.08%) and 194.08 (29.49%) in trees, 3.55 (0.85%) and 5.73 (0.87%) in litter and 302.30 (72.07%) and 458.27 (69.64%) in soil in the young and aged forests, respectively.

Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential.

Keywords: Tree biomass; disturbance; allometry; cork oak forests; soil organic carbon stock.


Full Text:

PDF HTML XML

References


References

Acácio V, 2009. The dynamics of cork oak systems in Portugal: the role of ecological and land use factors. PhD thesis Wageningen University, the Netherlands, pp. 208.

Acker SA, Halpern CB, Harmon ME, Dyrness CT, 2002. Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age. Tree Physiology 22: 213–217. http://dx.doi.org/10.1093/treephys/22.2-3.213

Alexandrov GA, 2007. Carbon Stock Growth in a Forest Stand: the Power of Age. Carbon Balance and Management 2(4): 1–5. http://dx.doi.org/10.1186/1750-0680-2-1

Ali A, Ma WJ, Yang XD, Sun BW, Shi QR, Xu MS, 2014. Biomass and carbon stocks in Schima superba dominated subtropical forests of eastern China. J Forest Sci 60(5): 198–207.

Andivia E, Fernandez M, Vazquez-Pique J, Gonzalez-Perez A, Tapias R, 2010. Nutrients return from leaves and litterfall in a Mediterranean cork oak (Quercus suber L.) forest in southwestern Spain. Eur J Forest Res 129: 5–12. http://dx.doi.org/10.1007/s10342-009-0274-6

Anne P, 1945. Carbone organique (total) du sol et de l’humus. Annales Agronomiques 15: 161–172.

Baishya R, Bariki SK, Upadhaya K, 2009. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology 50(2): 295–304.

Balboa-Murias MA, Rojo A, Álvarez JG, Merino A, 2006. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals Forest Sci 63: 557–565. http://dx.doi.org/10.1051/forest:2006038

Batjes NH, 1996. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47: 151–163. http://dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x

Batjes NH, 2002. Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use Manage 18: 324–329.

Bauhus J, Khanna PK, Hopmans P, Weston C, 2002. Is soil carbon a useful indicator of sustainable forest soil management? A case study from native eucalypt forest of south-eastern Australia. Forest Ecol Manage 171: 59–74. http://dx.doi.org/10.1016/S0378-1127(02)00461-9

Belsley DA, Kuh E, Welsch R, 2004. Regression diagnostics – Identifying influential data and sources of collinearity. 284 pp. + annexes. Ed. Wiley. New York.

Brahim N, Bernoux M, Blavet D, Gallali T, 2010. Tunisian soil organic carbon stocks. Internat J Soil Sci 5(1): 34–40. http://dx.doi.org/10.3923/ijss.2010.34.40

Bremner JM, Mulvaney CS, 1982. "Total nitrogen", In: Page AL, Miller RH, Keeny DR, (Eds.), Methods of Soil Analysis, American Society of Agronomy and Soil Science Society of America, Madison,pp. 1119–1123.

Breusch TS, Pagan AR, 1979. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 47: 987-1007. http://dx.doi.org/10.2307/1911963

Brunner I, Godbold DL, 2007. Tree roots in a changing world. J Forest Res 12: 78-82. http://dx.doi.org/10.1007/s10310-006-0261-4

Burt R, 2004. Soil survey laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service, soil survey investigations report No. 42 Version 4.0.

Cairns MA, Barker JR, Shea RW, Haggerty PK, 1996. Carbon dynamics of Mexican tropical evergreen forests: influence of forestry mitigation options and refinement of carbon-flux estimates. Interciencia 21: 216–223.

Campos P, Daly-Hassen H, Oviedo JL, Ovando P, Chebil A, 2008. Accounting for single and aggregated forest incomes: Application to public cork oak forests in Jerez (Spain) and Iteimia (Tunisia). Ecological Economics 65: 76-86. http://dx.doi.org/10.1016/j.ecolecon.2007.06.001

Cañellas I, San Miguel A, 2000. Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Annals Forest Sci 57: 803–810. http://dx.doi.org/10.1051/forest:2000160

Cañellas I, Sánchez-González M, Bogino SM, Adame P, Herrero C, Roig S, Tomé M, Paulo JA, Bravo F, 2008. Silviculture and Carbon Sequestration in Mediterranean Oak Forests. Managing Forest Ecosystems: The Challenge Climate Change 17: 317-338. http://dx.doi.org/10.1007/978-1-4020-8343-3_18

Canga E, Diéguez-Aranda U, Elias AK, Cámara A, 2013. Above-ground biomass equations for Pinus radiata D. Don in Asturias. Forest Syst 22(3): 408-415. http://dx.doi.org/10.5424/fs/2013223-04143

Carey EV, Sala A, Keane R, Callaway RM, 2001. Are old forest underestimated as global carbon sinks? Global Change Biol 7: 339–344. http://dx.doi.org/10.1046/j.1365-2486.2001.00418.x

Caritat A, Bertoni G, Molinas M, Oliva M, Domínguez-Planella A, 1996. Litterfall and mineral return in two cork-oak forests in northeast Spain. Annals Forest Sci 53: 1049 –1058. http://dx.doi.org/10.1051/forest:19960601

Castaño J, Bravo F, 2012. Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals Forest Scie 69(6): 663–672. http://dx.doi.org/10.1007/s13595-012-0183-6

Cienciala E, Apltauer J, Exnerová Z, Tatarinov F, 2008. Biomass functions applicable to oak trees grown in Central-European forestry. J Forest Sci 54(3): 109–120.

Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J, 1994. Carbon pools and flux of global forest ecosystem. Science 263: 185–190. http://dx.doi.org/10.1126/science.263.5144.185

FAO, 2010. Global Forest Resources Assessment 2010: Main Report. Forestry paper 163, Rome, Italy. 340 pages.

Fonseca W, Benayas JMR, Alice FE, 2011. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. Forest Ecol Manage 262: 1400–1408. http://dx.doi.org/10.1016/j.foreco.2011.06.036

Furnival GM, 1961. An index for comparing equations used inconstructing volume tables. Forest Sci 7: 337–341.

Gil L, Pereira C, Silva P, 2005. Cork and CO2 fixation. Proceedings of SUBERWOOD: New challenges for integration of cork oak forests and products. Universidad de Huelva. Huelva, Spain. pp. 20–22.

Herrero C, Turrión MB, Pando V, Bravo F, 2011. Carbon in heartwood, sapwood and bark along stem profile in three Mediterranean Pinus species. Annals Forest Sci 68, 1067–1076. http://dx.doi.org/10.1007/s13595-011-0122-y

Ibáñez JJ, Vayreda J, Gracia C, 2002. Metodología complementaria al Inventario Forestal Nacional enCatalunya. In: Bravo F, del Río M, del Peso C, (Eds.). El Inventario ForestalNacional. Elemento clave para la gestión forestalsostenible. Fundación General de la Universidad de Valladolid, Spain. pp.67–77.

IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, Italy.

Janssens IA, Sampson DA, Cermark J, Meiresonne L, Riguzzi F, Overloop S, Ceulemans R, 1999. Above- and belowground phyto- mass and carbon storage in a Belgian Scots pine stand. Annals Forest Sci 56: 81–90. http://dx.doi.org/10.1051/forest:19990201

Jina BS, Sah P, Bhatt MD, Rawat YS, 2008. Estimating carbon sequestration rates and total carbon stockpile in degraded and non-degraded sites of oak and pine forest of Kumaun central Himalaya. Internat J Ecol 15: 75–81.

Konopka B, Pajtik J, Seven V, Lukac M, 2011. Belowground biomass functions and expansion factors in high elevation Norway spruce. Forestry 84: 41–48. http://dx.doi.org/10.1093/forestry/cpq042

Kutner M H, Nachtsheim C J, Neter J, 2004. Applied Linear Regression Models, New York, McGraw-Hill.

Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1–22. http://dx.doi.org/10.1016/j.geoderma.2004.01.032

Law BE, Turner D, Campbell J, Sun OJ, Van Tuyl S, Ritts WD, Cohen WB, 2004. Disturbance and climate effects on C stocks and fluxes across western Oregon USA. Global Change Biol 10: 1429–1444. http://dx.doi.org/10.1111/j.1365-2486.2004.00822.x

Lemée G, 1978. La hêtraie naturelle de Fontainebleau. in: Lamotte M, Bourlière F (Eds.). Problèmes d’écologie : Écosystèmes terrestres. Masson. Paris, France. pp. 75–128.

Léonardi S, Rapp M, Dénes A, 1992. Biomasse, minéralomasse, productivité et gestion de certains éléments biogènes dans une forêt de Quercus suber L. en Sicile (Italie). Ecologia méditerranea XVIII: 89–98.

Levy PE, Hale SE, Nicoll BC, 2004. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77: 421– 430. http://dx.doi.org/10.1093/forestry/77.5.421

Luyssaert S, Schulze E-D, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J, 2008. Old-growth forests as global carbon sinks. Nature 455: 213–215. http://dx.doi.org/10.1038/nature07276

Martin M P, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D, 2011. Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8: 1053–1065. http://dx.doi.org/10.5194/bg-8-1053-2011

Martínez F, Merino J, 1987. Evolución estacional de la biomasa subterránea del matorral del Parque Nacioanl de Doñana. VIII Bienal Real Sociedad Española Historia Natural, pp. 563–570.

Matthews GAR, 1993. The carbon content of trees. Forestry Commission Technical Paper (FCTP004).

Mohanraj R, Saravanan J, Dhanakumar S, 2011. Carbon stock in Kolli forests. Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. Biogeosciences Forestry 4: 61–65. http://dx.doi.org/10.3832/ifor0568-004

Nelson DW, Sommers LE, 1996. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America Book American Society of Agronomy, Madison, WI. Series 5: 961–1010.

Nouri M, 2009. Facteurs pédoclimatiques et évolution de la subéraie tunisienne : propriétés physicochimiques et hydrodynamiques des sols dans les forets de chêne liège (Quercus suber L.).Ph.D. Thesis. Institut National Agronomique.

Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E, 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution 178: 229–236. http://dx.doi.org/10.1016/j.envpol.2013.03.019

Parresol BR, 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Sci 45: 573–593.

Parresol BR, 2001. Additivity of nonlinear biomass equations. Can J Forest Res 31: 865–878. http://dx.doi.org/10.1139/x00-202

Pausas JG, 1999. Mediterranean vegetation dynamics: modelling problems and functional Types. Plant Ecol 140: 27–39. http://dx.doi.org/10.1023/A:1009752403216

Peichl M, Arain MA, 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricuture Forest Meteorol 140: 51– 63. http://dx.doi.org/10.1016/j.agrformet.2006.08.004

Peltoniemi M, Makipaa R, Liski J, Tamminnen P, 2004.Changes in soil carbon with stand age—an evaluation of a modeling method with empirical data. Global Change Biol 10: 2078–2091. http://dx.doi.org/10.1111/j.1365-2486.2004.00881.x

Posner SD, 1988. Biological diversity and tropical forests in Tunisia. The Washington D.C. and Tunis Offices of the Agency for International Development. pp 202.

Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver S, Jurgensen MF, 2012. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecolog Applicat 22: 1297–1307. http://dx.doi.org/10.1890/11-0411.1

Pregitzer KS, Euskirchen ES, 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol 10: 2052–2077. http://dx.doi.org/10.1111/j.1365-2486.2004.00866.x

Robert B, Caritat A, Bertoni G, Vilar L, Molinas M, 1996. Nutrient content and seasonal fluctuations in the leaf component of cork oak (Quercus suber L.) litterfall. Vegetatio 122: 9–35. http://dx.doi.org/10.1007/BF00052813

Ruiz-Peinado R, Montero G, Rio M del, 2012. Biomass models to estimate carbon stocks for hardwood tree species. Forest Syst 21: 42–52. http://dx.doi.org/10.5424/fs/2112211-02193

Ruiz-Peinado R, Bravo-Oviedo A,Lopez-Senespleda E,Montero G, Rıo M, 2013.Do thinning influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J Forest Res 132: 253–262. http://dx.doi.org/10.1007/s10342-012-0672-z

SAS Institute Inc, 2011. SAS/ETS®. 9.3. User's Guide. SAS Institute Inc, Cary, NC. 3230 pp.

Sebei H, Albouchi A, Rapp M, El Aouni MH, 2001. Évaluation de la biomasse arborée et arbustive dans une séquence de dégradation de la suberaie à Cytise de Kroumirie (Tunisie). Annals Forest Sci 58: 175–191. http://dx.doi.org/10.1051/forest:2001117

Sebei H, Albouchi A, Rapp M, El Aouni MH, 2004. Productivité en biomasse du chêne liège dans une séquence de dégradation de la suberaie à Cytise de Kroumirie (Tunisie). Annals Forest Sci 61: 347–361. http://dx.doi.org/10.1051/forest:2004028

Seely B, Welham C, Blanco JA, 2010. Towards the application of soil organic matter as an indicator of forest ecosystem productivity. Deriving thresholds. developing monitoring systems and evaluating practices . Ecolog Indicators 10: 999–1008. http://dx.doi.org/10.1016/j.ecolind.2010.02.008

Shapiro SS, Wilk MB, 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3-4): 591–611. http://dx.doi.org/10.1093/biomet/52.3-4.591

Stevens A, van Wesemael B, 2008. Soil organic carbon stock in the Belgian Ardennes as affected by afforestation and deforestation from 1868 to 2005. Forest Ecol Manage 1527–1539. http://dx.doi.org/10.1016/j.foreco.2008.06.041

Taylor AR, Wang JR, Chen HYH, 2007. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia. Canada. Can J Forest Res 37: 2260–2269. http://dx.doi.org/10.1139/X07-080

Thomas SC, Martin AR, 2012. Carbon Content of Tree Tissues: A Synthesis. Forests 3: 332–352. http://dx.doi.org/10.3390/f3020332

VandeWalle I, Mussche S, Samson R, Lust N, Lemeur R, 2001. The above- and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders Belgium. Annals Forest Sci 58(5): 507–517. http://dx.doi.org/10.1051/forest:2001141

Walker WR, Skogerboe GV, 1987. Surface irrigation. Theory and practice, Prentice-536 Hall, Inc., Englewood Cliffs, New Jersey, USA.

White H, 1980. A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity. Econometrica 48: 817–838. http://dx.doi.org/10.2307/1912934

Wirth C, Schumacher J, Schulze ED, 2004. Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24: 121–139. http://dx.doi.org/10.1093/treephys/24.2.121

Zellner A, 1962. An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias. J Am Stat Assoc 57: 348–368. http://dx.doi.org/10.1080/01621459.1962.10480664

Zribi L, Mouillot F, Gharbi F, Jean-Marc Ourcival J-M, Hanchi B, 2015. Warm and Fertile Sub-Humid Conditions Enhance Litterfall to Sustain High Soil Respiration Fluxes in a Mediterranean Cork Oak Forest. Forests 6: 2918–2940. http://dx.doi.org/10.3390/f6092918




DOI: 10.5424/fs/2016252-08062

Webpage: www.inia.es/Forestsystems