Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees

Vicelina B. Sousa, José-Luís Louzada, Helena Pereira


Aim of the study: This paper aims to valorize the wood of Quercus faginea Lam. for high quality end uses (e.g. furniture) by studying growth and quality properties using mature trees. Age trends in tree-ring width and wood density are shown and the main factors responsible for variations in tree-ring width and wood density within and between trees are investigated.

Area of study: The study site is in the center of Portugal within the natural species distribution area.

Material and methods: Radial samples from ten mature trees were collected at 6 heights (from base to 9.7 m) and prepared for X-ray microdensity.

Main results: Wood density showed high values, ranging from 0.868 g/cm3 to 0.957 g/cm3. Wood density decreased from pith to bark and with stem height. Cambial age showed a linear relationship with wood density and most of the variation in wood is explained by age. Intra-ring and axial within-tree homogeneity was good.

Research highlights: Mature trees of Q. faginea showed high wood density and a high potential for high quality end uses, comparable to other oaks. Wood density is influenced by cambial age and tree-ring width. Wood quality may be improved by tree growth rates adjustment e.g. through an adequate tree stand density (e.g. thinning operations).



Quercus faginea; wood density components; cambial age; wood quality; variation.

Full Text:




Ackermann F, 1995. Influence du type de station forestière sur les composantes intracernes de la densité du bois du chêne pédonculé (Quercus robur L.) dans les chênaies de l'Adour et des coteaux basco-béarnais. Ann For Sci 52: 635–652.

Bergès L, Nepveu G, Franc A, 2008. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For Ecol Manag 255: 567-579.

Bergès L, Dupouey J-L, Franc A, 2000. Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees. 14: 398-408.

Chauhan S, Donnelly R, Huang C-L, Nakada R, Yafang Y, Walker J, 2006. Wood Quality: In Context. In Walker, J.F.C. (2nd ed) Primary Wood Processing. Principles and practice. Springer. The Netherlands, pp. 121-158.

Degron R, Nepveu G, 1996. Prévision de la variabilité intra- et interarbre de la densité du bois de chêne rouvre (Quercus petraea Liebl) par modélisation des largeurs et des densités des bois initial et final en fonction de l'âge cambial, de la largeur de cerne et du niveau dans l'arbre. Ann For Sci 53: 1019-1030.

Dilem A, 1995. Etude de quelques propriétés du bois de Chêne vert (Quercus ilex) dans la région d'El-Hassasna (Saida-Algérie), Forêt Méditerranéenne XVI: 74-78.

Gartner BL, North EM, Johnson GR, Singleton R, 2002. Effects of live crown on vertical patterns of wood density and growth in Douglas-fir. Can J For Res 32: 439-447.

Genet A, Auty D, Achim A, Bernier M, Pothier D, Cogliastro A, 2012. Consequences of faster growth for wood density in northern red oak (Quercus rubra Liebl.). Forestry 86: 99-110.

Goicoechea PG, Agúndez D, 2000. Robles y hayas en España. Conservación de recursos genéticos. Invest Agr: Sist Recur For 9: 125-142.

Guilley E, Hervé J-C, Huber F, Nepveu G, 1999. Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density. Ann For Sci 56: 449-458.

Guilley E, Hervé J-C, Nepveu G, 2004. The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manag 189: 111-121.

Hillis WE, 1987. Heartwood and tree exudates. Springer-Verlag. Berlin, Germany. 268 pp.

Knapič S, Louzada JL, Leal S, Pereira H, 2007. Radial variation of wood density components and ring width in cork oak trees. Ann For Sci 64: 211-218.

Knapič S, Louzada JL, Leal S, Pereira H, 2008. Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry 81: 465-473.

Knapič S, Louzada JL, Pereira H, 2011. Variation of wood density components within and between Quercus faginea trees. Can J For Res 41: 1212-1219.

Larson PR, 1969. Wood formation and the concept of wood quality. Yale University, School of Forestry Bulletin 74, 1 – 54.

Leal S, Sousa VB, Knapic S, Louzada JL, Pereira H, 2011. Vessel size and number are contributors to define wood density in cork oak. Eur J Forest Res 130: 1023–1029.

Leal S, Sousa VB, Pereira H, 2012. Cork oak (Quercus suber L.) wood hygroscopic properties and dimensional stability. Forest Systems 21: 355-363.

Lei H, Milota MR, Gartner BL, 1996. Between- and within-tree variation in the anatomy and specific gravity of wood in oregon white oak (Quercus garryana Dougl.). IAWA J 17: 445-461.

Loewenstein EF, Jonhson PS, Garrett HE, 2000. Age and diameter structure of a managed uneven-aged oak forest. Can J For Res 30:1060-1070.

Louzada J, 2000. Variação fenotípica e genética em características estruturais na madeira de Pinus pinaster Ait. O comprimento das fibras e a densidade até aos 80 anos de idade das árvores. Parâmetros genéticos na evolução juvenil-adulto das componentes da densidade da madeira. UTAD, Série Didáctica, Ciências Aplicadas nº 143. Vila Real, Portugal. 293 pp.

Nepveu G, 1984. Contrôle héréditaire de la densité et de la rétractibilité du bois de trois espèces de chêne (Quercus petraea, Quercus robur et Quercus rubra), Silvae Genet. 33: 110-115.

Paul BH, 1963. The application of silviculture in controlling the specific gravity of wood. USDA Forest service, Technical Bulletin No. 1288.

Panshin AJ, Zeeuw C, 1980. Textbook of wood technology. McGraw-Hill Book. Co. New York. 736 pp.

Polge H, Keller R, 1973. Qualité du bois et largeur d'accroissements en forêt de trançais. Ann Sci For 30: 91-125.

Rao RV, Aebischer DP, Denne MP, 1997. Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J 18:127-138.

Saranpaa P, 2003. Wood density and growth. In Wood quality and its biological basis. J. Barnett and G. Jeronimidis (Eds.). Blackwell Publishing Ltd, CRC Press, Great Britain. pp 97-117.

Sousa VB, Cardoso S, Pereira H, 2013. Ring width variation and heartwood development in Quercus faginea Wood Fibre Sci 45:1-10.

Sousa VB, Louzada JL, Pereira H, 2015. Earlywood vessel features in Quercus faginea: relationship between ring width and wood density at two sites in Portugal. iForest 8: 866-873

Sousa VB, Cardoso S, Pereira H, 2014. Age trends in the wood anatomy of Quercus faginea. IAWA J 35: 293-306.

Walker JFC, 2006. Primary Wood Processing. Principles and practice (2nd ed). Springer. The Netherlands. 596 pp.

Woodcock DW, Shier AD, 2002. Wood specific gravity and its radial variations: the many ways to make a tree. Trees 16: 437-443.

Zhang SY, 1994. Mechanical properties in relation to specific gravity in 342 Chinese woods. Wood Fiber Sci 26: 512-526.

Zhang SY, Owoundi RE, Nepveu G, Mothe F, Dhôte J-F, 1993. Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence. Can J For Res 23: 2587-2593.

Zobel BJ, van Buijtenen JP, 1989. Wood variation, its causes and control, Springer-Verlag, Berlin, Germany. 378 pp.

DOI: 10.5424/fs/2016251-08411