Assessment of Different Remote Sensing Data for Forest Structural Attributes Estimation in the Hyrcanian forests

Noureddin Nourian, Shaban Shataee-Joibary, Jahangir Mohammadi

Abstract


Aim of study: The objective of the study was the comparative assessment of various spatial resolutions of optical satellite imagery including Landsat-TM, ASTER, and Quickbird data to estimate the forest structure attributes of Hyrcanian forests, Golestan province, northernIran.

Material and methods: The 112 square plots with area of0.09 ha were measured using a random cluster sampling method and then stand volume, basal area, and tree stem density were computed using measured data. After geometric and atmospheric corrections of images, the spectral attributes from original and different synthetic bands were extracted for modelling. The statistical modelling was performed using CART algorithm. Performance assessment of models was examined using the unused validation plots by RMSE and bias measures.

Main Results: The results showed that model of Quickbird data for stand volume, basal area, and tree stem density had a better performance compared to ASTER and TM data. However, estimations by ASTER and TM imagery had slightly similar results for all three parameters.

Research highlights: This study exposed that the high-resolution satellite data are more useful for forest structure attributes estimation in the Hyrcanian broadleaves forests compared with medium resolution images without consideration of images costs. However, regarding to be free of the most medium resolution data such as ASTER and TM,ETM+ or OLI images, these data can be used with slightly similar results.  

Keywords: Forest structure attributes; quickbird; ASTER; TM; CART algorithm; Hyrcanian forests.

Keywords


Forest structure attributes; Quickbird; ASTER; TM; CART algorithm; Hyrcanian forests.

Full Text:

PDF HTML XML

References


References

Aertsen W, Kint V, Orshoven JV, Ozakan KA, Wuysa B, 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests, Ecol Model 221: 1119-1130. http://dx.doi.org/10.1016/j.ecolmodel.2010.01.007

Breiman L, Friedman JH, Olshen RA, Stone CJ, 1984. Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software. Monterey, C, 358.

Chavez JR, Pat S, 1996. Image-based atmospheric corrections-revisited and improved. Photogramm Eng Rem S 62: 1025-1036.

Cohen WB, Spies TA, 1992. Estimation structural attributes of Douglas fir/western hemlock Forests stand from Landsat and Spot imagery, Rem Sens Envi 41: 1-17. http://dx.doi.org/10.1016/0034-4257(92)90056-P

Cooke WH, Jacobs DM, 2005. Rapid classification of Landsat TM imagery for phase stratification using the automated NDVI threshold supervised classification (ANTSC) methodology. In: Proceedings of the fourth annual forest inventory and analysis symposium, 2002 November 19–21, New Orleans, LA. Gen. Tech. Rep. NC-252. St. Paul, MN: US Department of Agriculture, Forest Service, North Central Research Station, 81-86.

Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792. http://dx.doi.org/10.1890/07-0539.1

Fazakas Z, Nilsson M, Olsson H, 1999. Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agri For Met 98: 417−425. http://dx.doi.org/10.1016/S0168-1923(99)00112-4

Franco-Lopez H, Ek, AR, Bauer ME, 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbour's method. Rem Sen Env 77: 251-274. http://dx.doi.org/10.1016/S0034-4257(01)00209-7

Freitas SR, Mello MCS, Cruz CBM, 2005. Relationships between forest structure and vegetation indices in Atlantic Rainforest. For Ecol Manage 218: 353–362.

Gebreslasie MT, Ahmed FB, Jan AN, Adrdt V, 2010. Predicting forest structural attributes using ancillary data and ASTER satellite data. Int J App Ear Obs Geoin 125: 523–526. http://dx.doi.org/10.1016/j.jag.2009.11.006

Hall RJ, Skakun RS, Arsenault EJ, Case BS, 2006. Modelling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manage 225: 375-390.

Huang X, Jensen J, 1997. A Machine- Learning Approach to Automated Knowledge-Base Building for Remote sensing Image Analysis with GIS Data. Photogram Eng Rem Sen 63: 1185-1194.

Huiyan G, Limin D, Gang W, Dong X, Shunzhong W, Hui W, 2006. Estimation of forest volumes by integrating Landsat TM imagery and forest inventory data. Science in China Series E. Tec Sci 49: 54–62.

Hyvonen P, 2002. Kuvioittaisten puustotunnsteja toimenpide-ehdotusten estimointi k-kuviotason tukianeiston Avulla. Metsat Aikaka 3: 363-379.

Hyyppa J, Hyyppa H, Inkinen M, Engdahi M, Linko S, Zhu YH, 2000. Accuracy comparison of various remote sensing data sources in the retrieval of stand attributes. For Ecol Manage 128: 109-120.

Kalbi S, 2011. Estimation of Forest Structural Attributes Using ASTER and SPOT-HRG Data (Case study: Darabkola forest). M.Sc thesis, Department of Forestry, Sari University of Agricultural Sciences & Natural Resources, 107 pp.

Kalbi S, Fallah A, Shataee Sh, 2014. Estimation of forest attributes in the Hyrcanian forests, comparison of advanced space-borne thermal emission and reflection radiometer and satellite poure I'observation de la terre-high resolution grounding data by multiple linear, and classification and regression tree regression models. J App Rem S 8: 2-18. http://dx.doi.org/10.1117/1.jrs.8.083632

Kilpelainen P, and Tokola T, 1999. Gain to be achieved from stand delineation in Landsat TM image-based estimation of stand volume. For Ecol Manage 124: 105-111.

Lawrence L, Wright A, 2001. Rule-Based Classification and Regression Tree (CART) Analysis. Photogramm Eng Rem Sen 67: 1137-1142.

Makela H, Pekkarine A, 2004. Estimation of forest stands volumes by Landsat TM imagery and stand- Level field- inventory data. For Manage 196: 245-255.

Mohammadi J, Shataee Sh, Babanezhad M, 2011. Estimation of forest stand volume, tree density and biodiversity using Landsat-ETM+ Data, comparison of linear and regression tree analyses. First Conference on Spatial Statistics. Proced Env Sci 7: 299–304.

Mohammadi J, Shataee Sh, Yaghmaee F, Mahiny AS, 2010. Modelling Forest Stand volume and Tree Density Using Landsat ETM+ Data. Int J Remote Sens 31: 2959-2975. http://dx.doi.org/10.1080/01431160903140811

Moisen GG, Frescino TS, 2002. Comparing five modelling techniques for predicting forest characteristics. Ecol Mod 157: 209– 225. http://dx.doi.org/10.1016/S0304-3800(02)00197-7

Muukkonen P, Heiskanen J, 2005. Estimation biomass for boreal forests using ASTER satellite data combined with stand wise forest inventory data. Remote Sen Env 99: 434-447. http://dx.doi.org/10.1016/j.rse.2005.09.011

R Core Team, 2012. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: Available: http://www.R-project.org/

Sarunas, R. 1997. On dimensionality, sample size, and classification error of nonparametric linear classification algorithms. IEEE Trans. Pattern Anal Mach Intel 19: 667–671 http://dx.doi.org/10.1109/34.601254

Shataee Sh, Kalbi S, Fallah A, Pelz DR, 2012. Forest attributes imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR, and random forest regression algorithms. Int J Rem Sen 33: 6254-6280. http://dx.doi.org/10.1080/01431161.2012.682661

Sironen S, Kangas A, Maltamo M, 2010. Comparison of different non-parametric growth imputation methods in the presence of correlated observations. Forestry 83(1): 39-51. http://dx.doi.org/10.1093/forestry/cpp030

Sivanpillai R, Smith CT, Srinivasan R, Messina MG, BenWU X, 2006. Estimation of managed loblolly pine stands age and density with Landsat ETM+ data. For Manage 223: 247-254.

Tokola T, Heikikkila J, 1997. Improving Satellite image based forest inventory by using a priori site quality information. Silva Fen 31: 67-78. http://dx.doi.org/10.14214/sf.a8511

Trotter CM, Dymond JR, Goulding CJ, 1997. Estimation of timber volume in a coniferous plantation forest using Landsat TM. Int J Rem Sens 18: 2209-2223. http://dx.doi.org/10.1080/014311697217846

Tuominen S, Haakana M, 2005. Landsat TM Imagery and High Altitude Aerial Photographs in Estimation of Forest Characteristics, Silva Fen 39: 573–584. http://dx.doi.org/10.14214/sf.367

Wang YH, Raulier F, Ung CH, 2005. Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods a case study of Lodgepole Pine productivity. For Ecol Manage 214: 201–211.

Wolter TP, Townsend PA, Sturtevant BR, 2009. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Rem Sens 113: 2019-2036. http://dx.doi.org/10.1016/j.rse.2009.05.009

Yazdani S, 2011. Estimation of Forest Structural Attributes Using Quickbird Data. M.Sc thesis, Department of Forestry, Gorgan University of Agricultural Sciences & Natural Resources, 156.




DOI: 10.5424/fs/2016253-08682

Webpage: www.inia.es/Forestsystems