Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

  • Teresa Soares David Instituto Nacional de Investigação Agrária e Veterinária I.P., Quinta do Marquês, Av. da República, 2780-159 Oeiras. Centro de Estudos Florestais, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal http://orcid.org/0000-0003-1473-899X
  • Clara Assunção Pinto Instituto Nacional de Investigação Agrária e Veterinária I.P., Quinta do Marquês, Av. da República, 2780-159 Oeiras. http://orcid.org/0000-0003-4556-8970
  • Nadezhda Nadezhdina Institute of Forest Botany, Dendrology and Geobiocenology, Mendel University, Zemedelska 3, 613 00 Brno.
  • Jorge Soares David Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa. Centro de Estudos Florestais, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal http://orcid.org/0000-0001-6994-1085
Keywords: Tree hydraulics, Tree mortality, Climate change, Forest management, Water resources

Abstract

Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning.

Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels.

Material and Methods: For literature review we used Scopus, Web of Science and Google Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes.

Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture.

Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silvicultural practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed.

Keywords: tree hydraulics; tree mortality; climate change; forest management; water resources.

Downloads

Download data is not yet available.

References

References

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259: 660–684. http://dx.doi.org/10.1016/j.foreco.2009.09.001

Allen CD, Breshears DD, McDowell NG, 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8): art129. http://dx.doi.org/10.1890/ES15-00203.1

Anderegg WRL, Berry JA, Field CB, 2012. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17: 693–700. http://dx.doi.org/10.1016/j.tplants.2012.09.006

APCOR, 2014. Anuário da APCOR 2014.Santa Maria de Lamas, Santa Maria da Feira, Portugal.78 pp.

Aranda I, Ramírez-Valiente JA, Rodríguez-Calcerrada J, 2014. Functional features in the response to drought by Quercus species: inter- and intra-specific variation. Ecosistemas 23(2): 27-36.

Arosa ML, Ceia RS, Costa SR, Freitas H, 2015. Factors affecting cork oak (Quercus suber) regeneration: acorn sowing success and seedling survival under field conditions. Plant Ecol Divers 8 (4): 519–528. http://dx.doi.org/10.1080/17550874.2015.1051154

Baldocchi DD, Xu L, 2007. What limits evapotranspiration from Mediterranean oak woodlands-The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv Water Resour 30: 2113–2122. http://dx.doi.org/10.1016/j.advwatres.2006.06.013

Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J, 2015.The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Chang Biol 21: 1213–1225. http://dx.doi.org/10.1111/gcb.12785

Bond BJ, Kavanagh KL, 1999. Stomatal behaviour of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol 19: 503–510. http://dx.doi.org/10.1093/treephys/19.8.503

Børja I, Svĕtlík J, Nadezhdin V, Čermák J, Rosner S, Nadezhdina N, 2013.Sap flow dynamics as a diagnostic tool in Norway spruce. Acta Hortic 991: 31–36. http://dx.doi.org/10.17660/ActaHortic.2013.991.3

Bosch JM, Hewllett JD, 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55: 3–23. http://dx.doi.org/10.1016/0022-1694(82)90117-2

Breda N, Huc R, Granier A, Dreyer E, 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63, 625–644. http://dx.doi.org/10.1051/forest:2006042

Brodribb TJ, Cochard H, 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149: 575–584. http://dx.doi.org/10.1104/pp.108.129783

Brodribb TJ, McAdam SAM, 2011. Stomatal (mis)behaviour. Tree Physiol 31(10): 1039–1040. http://dx.doi.org/10.1093/treephys/tpr100

Brodribb TJ, Bowman DMJS, Nichols S, Delzon S, Burlett R, 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188: 533–542. http://dx.doi.org/10.1111/j.1469-8137.2010.03393.x

Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV, 2014. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc Natl Acad Sci USA 111: 14489–14493. http://dx.doi.org/10.1073/pnas.1407930111

Bucci SJ, Scholtz FG, Goldstein G, Meinzer FC, Sternberg L, 2003. Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26: 1633–1645. http://dx.doi.org/10.1046/j.0140-7791.2003.01082.x

Buckley TN, Mott KA, 2013. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36: 1691–1699. http://dx.doi.org/10.1111/pce.12140

Bugalho MN, Plieninger T, Aronson J, Ellatifi M, Crespo DG, 2009. Open woodlands: a diversity of uses (and overuses). In: Cork Oak Woodlands on the Edge: Ecology, Biogeography, and Restoration of an Ancient Mediterranean Ecosystem; Aronson J, Pereira JS, Pausas JG (eds). pp: 33–45. Island Press, Washington DC, USA.

Caldeira MC, Lecomte X, David TS, Pinto JG, Bugalho MN, Werner C, 2015. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates. http://www.nature.com/articles/srep15110

Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED, 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595. http://dx.doi.org/10.1007/BF00329030

Caneva G, Galotta G, Cancellieri L, Savo V, 2009. Tree roots and damages in the Jewish catacombs of Villa Torlonia (Roma). J Cult Herit 10: 53–62. http://dx.doi.org/10.1016/j.culher.2008.04.005

Chaves MM, Maroco JP, Pereira JS, 2003. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30: 239–264. http://dx.doi.org/10.1071/FP02076

Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103: 551–560. http://dx.doi.org/10.1093/aob/mcn125

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752–755. http://dx.doi.org/10.1038/nature11688

Cochard H, Breda N, Granier A, Aussenac G, 1992. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q pubescens Willd, Q robur L). Ann Sci For 49(3): 225–233. http://dx.doi.org/10.1051/forest:19920302

Cook BI, Ault TR, Smerdon JE, 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. http://advances.sciencemag.org/content/1/1/e1400082

Cooper DJ, D'Amico DR, Scott ML, 2003. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping. Environ Manage 31: 215–226. http://dx.doi.org/10.1007/s00267-002-2808-2

Damour G, SIimonneau T, Cochard H, Urban L, 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33: 1419–1438. http://dx.doi.org/10.1111/j.1365-3040.2010.02181.x

David JS, Henriques MO, David TS, Tomé J, Ledger DC, 1994. Clearcutting effects on streamflow in coppiced Eucalyptus globulus stands in Portugal. J Hydrol 162: 143–154. http://dx.doi.org/10.1016/0022-1694(94)90008-6

David TS, Ferreira MI, Cohen S, Pereira JS, David JS, 2004. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agr For Meteorol 122: 193–205. http://dx.doi.org/10.1016/j.agrformet.2003.09.014

David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS, 2007. Water-use strategies in two co-occuring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27: 793–803. http://dx.doi.org/10.1093/treephys/27.6.793

David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, Cermak J, Chaves MM, Pereira JS, David JS, 2013. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. Forest Ecol Manag 307: 136–146. http://dx.doi.org/10.1016/j.foreco.2013.07.012

Delzon S, Cochard H, 2014. Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytol 203: 355–358. http://dx.doi.org/10.1111/nph.12798

Di Castri F, 1991. An ecological overview of the five regions with a mediterranean climate. In: Biogeography of Mediterranean Invasions; Groves RH, di Castri F(eds). pp: 3–16. Cambridge Univ. Press, Cambridge, UK. http://dx.doi.org/10.1017/CBO9780511525544.002

Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, et al., 2015. Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24(1): 25–43. http://dx.doi.org/10.1111/geb.12224

Dolman AJ, 1988. Transpiration of an oak forest as predicted from porometer and weather data. J Hydrol 97: 225–234. http://dx.doi.org/10.1016/0022-1694(88)90117-5

Domec JC, Gartner BL, 2001. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees–Struct Funct 15: 204–214. http://dx.doi.org/10.1007/s004680100095

Engelbrecht BMJ, 2012. Forests on the brink. http://www.nature.com/nature/journal/v491/n7426/full/nature11756.html

Fernández JE, Perez-Martin A, Torres-Ruiz JM, Cuevas MV, Rodriguez-Dominguez CM, Elsayed-Farag S, Morales-Sillero A, García JM, Hernandez-Santana V, Diaz-Espejo A, 2013. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant Soil 372 (1-2): 279–295. http://dx.doi.org/10.1007/s11104-013-1704-2

Folch A, Ferrer N, 2015. The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin. Sci Total Environ 524–525: 213–224. http://dx.doi.org/10.1016/j.scitotenv.2015.03.123

Girón IF, Corell M, Martín-Palomo MJ, Galindo A, Torrecillas A, Moreno F, Moriana A, 2015. Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees. Agric Water Manage 161: 114–126. http://dx.doi.org/10.1016/j.agwat.2015.07.014

Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A, 2013. Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecol Manag 310: 827–835. http://dx.doi.org/10.1016/j.foreco.2013.09.030

Gou S, Miller G, 2014. A groundwater–soil–plant–atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation. Ecohydrology 7(3): 1029–1041. http://dx.doi.org/10.1002/eco.1427

Gou S, Gonzales S, Miller GR, 2015. Mapping potential groundwater-dependent ecosystems for sustainable management. Groundwater 53(1): 99–110. http://dx.doi.org/10.1111/gwat.12169

Gracia CA, Tello E, Sabaté S, Bellot J, 1999. GOTILWA: an integrated model of water dynamics andforest growth. In: Ecology of Mediterranean evergreen oak forests; Roda F, Retana J, Gracia CA, Bellot J(eds). pp: 163–179. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-642-58618-7_12

Grant GE, Tague CL, Allen CD, 2013. Watering the forest for the trees: an emerging priority for managing water in forest landscapes. Front Ecol Environ 11: 314–321. http://dx.doi.org/10.1890/120209

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA, 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure, Oecologia 126: 457–461. http://dx.doi.org/10.1007/s004420100628

Hacke UG, Sperry JS, Wheeler JK, Castro L, 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26: 689–701. http://dx.doi.org/10.1093/treephys/26.6.689

Hajek P, Leuschner C, Hertel D, Delzon S, Schudt B, 2014. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiol 34: 744–756. http://dx.doi.org/10.1093/treephys/tpu048

Henneron L, Aubert M, Bureau F, Dumas Y, Ningre F, Perret S, Richter C, Balandier P, Chauvat M, 2015. Forest management adaptation to climate change: a Cornelian dilemma between drought resistance and soil macro-detritivore functional diversity. J Applied Ecol 52: 913–927. http://dx.doi.org/10.1111/1365-2664.12440

Hewlett JD, 1982. Principles of Forest Hydrology. The University of Georgia Press, Athens, Georgia, USA. 183 pp.

Hillel D, 1982. Introduction to Soil Physics. Academic Press: London, UK. 364 pp.

Howard J, Merrifield M, 2010. Mapping groundwater dependent ecosystems in California. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011249

Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, WT Pockman, Jackson RB, 2005. Ecohydrological implications of woody plant encroachment. Ecology 86: 308–319. http://dx.doi.org/10.1890/03-0583

Iglesias A, Garrote L, 2015. Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manage 155: 113–124. http://dx.doi.org/10.1016/j.agwat.2015.03.014

Infante JM, Rambal S, Joffre R, 1997. Modelling transpiration in holm-oak savannah trees: scaling up from the leaf to the canopy. Agr For Meteorol 87: 273–289. http://dx.doi.org/10.1016/S0168-1923(97)00033-6

Jackson RB, Sperry JS, Dawson TE, 2000. Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5: 482–488. http://dx.doi.org/10.1016/S1360-1385(00)01766-0

Jansen S, Choat B, Pletsers A, 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96(2): 409–419. http://dx.doi.org/10.3732/ajb.0800248

Jiménez MN, Fernández-Ondoño E, Ripoll MÁ, Castro-Rodríguez J, Huntsinger L, Navarro FB, 2016. Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterraneanclimatic conditions. Land Degrad Develop 27: 357–365. http://dx.doi.org/10.1002/ldr.2250

Kerhoulas LP, Kolb TE, Hurteau MD, Koch GW, 2013. Managing climate change adaptation in forests: a case study from the U.S. Southwest. J Applied Ecol 50: 1311–1320. http://dx.doi.org/10.1111/1365-2664.12139

Kurz-Besson C, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF et al., 2014. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agr For Meteorol 184: 230–242. http://dx.doi.org/10.1016/j.agrformet.2013.10.004

Larter M, Brodribb TJ, Pfautsch S, Burlett R, Cochard H, Delzon S, 2015. Extreme aridity pushes trees to their physical limits. Plant Physiol 168: 804–807. http://dx.doi.org/10.1104/pp.15.00223

Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S, 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genusAcer. New Phytol 190(3): 709–723. http://dx.doi.org/10.1111/j.1469-8137.2010.03518.x

Le Maitre DC, Scott DF, Colvin C, 1999. A review of information on interactions between vegetation and groundwater. Water SA 25(2): 137–152.

Limousin JM, Rambal S, Ourcival J-M, Rodríguez-Calcerrada J, Pérez-Ramos IM, Rodríguez-Cortina R, Misson L, Joffre R, 2012. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169: 565–577. http://dx.doi.org/10.1007/s00442-011-2221-8

Linares JC, Camarero JJ, Carreira JA, 2010. Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecol 98: 592–603. http://dx.doi.org/10.1111/j.1365-2745.2010.01645.x

Lubczynski MW, Gurwin J, 2005. Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes - Sardon study case, Spain. J Hydrol 306: 71–96. http://dx.doi.org/10.1016/j.jhydrol.2004.08.038

Mann ME, Gleick PH, 2015. Climate change and California drought in the 21st century. Proc Natl Acad Sci USA 112(13): 3858–3859. http://dx.doi.org/10.1073/pnas.1503667112

Manzoni S, Vico G, Katul G, Palmroth S, Jackson RB, Porporato A, 2013. Hydraulic limits on maximum plant transpiration and the origin of the safety-efficiency tradeoff. New Phytol 198: 169–178. http://dx.doi.org/10.1111/nph.12126

Martínez-Vilalta J, Mencuccini M, Alvarez X, Camacho J, Loepfe L, Piñol J, 2012. Spatial distribution and packing of xylem conduits. Am J Bot 99: 1189–1196. http://dx.doi.org/10.3732/ajb.1100384

Mayor X, Rodà F, 1994. Effects of irrigation and fertilization on stem diameter growth in a Mediterranean holm oak forest. Forest Ecol Manag 68(1): 119–126. http://dx.doi.org/10.1016/0378-1127(94)90143-0

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA, 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178: 719–739. http://dx.doi.org/10.1111/j.1469-8137.2008.02436.x

Millar CI, Stephenson NL, 2015. Temperate forest health in an era of emerging megadisturbance. Science 349: 823–826. http://dx.doi.org/10.1126/science.aaa9933

Miller GR, Chen X, Rubin Y, Ma S, Baldocchi DD, 2010. Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour Res 46, W10503 http://dx.doi.org/10.1029/2009WR008902

Nadezhdina N, David TS, David JS, Ferreira MA, Dohnal M, Tesar M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J et al, 2010. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3: 431–444. http://dx.doi.org/10.1002/eco.148

Nadezhdina N, Prax A, Cermak J, Nadezhdin V, Ulrich R, Neruda I, Schlaghamersky A, 2012. Spruce roots under heavy machinery loading in two different soil types. Forest Ecol Manag 282: 46–52. http://dx.doi.org/10.1016/j.foreco.2012.06.054

Nardini A, Lo Gullo MA, Trifilo P, Salleo S, 2014. The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103: 68–79. http://dx.doi.org/10.1016/j.envexpbot.2013.09.018

O'Grady AP, Cook PG, Howe P, Werren G, 2006. Groundwater use by dominant tree species in tropical remnant vegetation communities. Aust J Bot 54(2): 155–171. http://dx.doi.org/10.1071/BT04179

O'Grady AP, Mitchell PJM, Pinkard EA, Tissue DT, 2013. Thirsty roots and hungry leaves: unravelling the roles of carbon and water dynamics in tree mortality. New Phytol 200: 294–297. http://dx.doi.org/10.1111/nph.12451

Orellana F, Verma P, Loheide SP, Daly E, 2012.Monitoring and modeling water-vegetation interactions in groundwaterdependent ecosystems. Rev Geophys 50, RG3003 http://dx.doi.org/10.1029/2011RG000383

Paço TA, David TS, Henriques MO, Pereira JS, Valente F, Banza J, Pereira FL, Pinto C, David JS, 2009. Evapotranspiration from a Mediterranean evergreen oak savannah: the role of trees and pasture. J Hydrol 369: 98–106. http://dx.doi.org/10.1016/j.jhydrol.2009.02.011

Pammenter NW, Vander Willigen C, 1998. A mathematical and statistical analysis of the curvesillustrating vulnerability of xylem to cavitation. Tree Physiol 18: 589–593. http://dx.doi.org/10.1093/treephys/18.8-9.589

Pausas JG, Marañón T, Caldeira M, Pons J, 2009. Natural Regeneration. In: Cork Oak Woodlands on the Edge; Aronson J, Pereira JS, Pausas JG (eds). pp: 115–124. Island Press,Washington DC, USA.

Peel MC, Finlayson BL, McMahon TA, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11: 1633–1644. http://dx.doi.org/10.5194/hess-11-1633-2007

Peñuelas J, Fillela I, 2003. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ Exp Bot 49(3): 201–208. http://dx.doi.org/10.1016/S0098-8472(02)00070-9

Pinto CA, Henriques MO, Figueiredo JP, David JS, Abreu FG, Pereira JS, Correia I, David TS, 2011. Phenology and growth dynamics in Mediterranean evergreen oaks: Effects of environmental conditions and water relations. Forest Ecol Manag 262(3): 500–508. http://dx.doi.org/10.1016/j.foreco.2011.04.018

Pinto CA, David JS, Cochard H, Caldeira MC, Henriques MO, Quilhó T, Paço TA, Pereira JS, David TS, 2012. Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaks. Forest Ecol Manag 285: 1–10. http://dx.doi.org/10.1016/j.foreco.2012.08.005

Pinto CA, Nadezhdina N, David JS, Kurz-Besson C, Caldeira MC, Henriques MO, Monteiro FG, Pereira JS, David TS, 2014. Transpiration in Quercus suber trees under shallow water table conditions: the role of soil and groundwater. Hydrol Process 28(25): 6067–6079. http://dx.doi.org/10.1002/hyp.10097

Prieto I, Armas C, Pugnaire FI, 2012. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193(4): 830–841. http://dx.doi.org/10.1111/j.1469-8137.2011.04039.x

Ramírez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I, 2009. Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol 18: 3803–3815. http://dx.doi.org/10.1111/j.1365-294X.2009.04317.x

Ramírez-Valiente JA, Valladares F, Huertas AD, Granados S, Aranda I, 2011. Factors affecting cork oak growth under dry conditions: local adaptation and contrasting additive genetic variance within populations. Tree Genet Genomes 7: 285–295. http://dx.doi.org/10.1007/s11295-010-0331-9

Ramírez-Valiente JA, Valladares F, Delgado A, Nicotra AB, Aranda I, 2015.Understanding the importance of intrapopulation functional variability and phenotypic plasticity in Quercus suber. Tree Genet Genomes 11: 35 http://dx.doi.org/10.1007/s11295-015-0856-z

Sardans J, Peñuelas J, 2013. Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365: 1–33. http://dx.doi.org/10.1007/s11104-013-1591-6

Sperry JS, 2000. Hydraulic constraints on plant gas exchange. Agr Forest Meteorol 104(1): 13–23. http://dx.doi.org/10.1016/S0168-1923(00)00144-1

Spinoni J, Vogt J, Naumann G, Carrao H, Barbosa P, 2015. Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. Int J Climatol 35: 2210–2222. http://dx.doi.org/10.1002/joc.4124

Tardieu F, Parent B, Simonneau T, 2010. Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33: 636–647. http://dx.doi.org/10.1111/j.1365-3040.2009.02091.x

Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A, 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. http://www.nature.com/articles/srep12449

Torres-Ruiz JM, Diaz-Espejo A, Perez-Martin A, Hernandez-Santana V, 2015. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions. Tree Physiol 35(4): 415–424. http://dx.doi.org/10.1093/treephys/tpu055

Tyree MT, Cochard H, 1996. Summer and winter embolism in oak – impact on water relations. Ann Sci Forest 53: 173–180. http://dx.doi.org/10.1051/forest:19960201

Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S, 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33: 672–683. http://dx.doi.org/10.1093/treephys/tpt030

Valladares F, Benavides R, Rabasa SG, Diaz M, Pausas JG, Paula S, Simonson WD, 2014. Global change and Mediterranean forests: current impacts and potential responses. In: Forests and Global Change; Coomes DA, Burslem DFRP, Simonson WD (eds). pp 47–75. Cambridge University Press, UK. http://dx.doi.org/10.1017/CBO9781107323506.005

Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E, 2003. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54(390): 2015–2024. http://dx.doi.org/10.1093/jxb/erg221

Wheeler J, Huggett B, Tofte A, Fulton R, Holbrook NM, 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36: 1938–1949. http://dx.doi.org/10.1111/pce.12139

Wullschleger SD, Meinzer FC, Vertessy RA, 1998. A review of whole-plant water use studies in trees. Tree Physiol 18: 499–512. http://dx.doi.org/10.1093/treephys/18.8-9.499

Yin L, Zhou Y, Huang J, Wenninger J, Zhang E, Hou G, Dong J, 2015. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees. J Hydrol 528: 435–448. http://dx.doi.org/10.1016/j.jhydrol.2015.06.063

Zencich SJ, Froend R, Turner JV, Gailitis V, 2002. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy aquifer. Oecologia 131: 8–19. http://dx.doi.org/10.1007/s00442-001-0855-7

Zeppel MJB, Anderegg WRL, Adams HD, 2013. Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197: 372–374. http://dx.doi.org/10.1111/nph.12090

Zhang L, Dawes WR, Walker GR, 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3): 701–708. http://dx.doi.org/10.1029/2000WR900325

Zufferey V, Cochard H, Ameglio T, Spring J-L, Viret O, 2011. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J Exp Bot 62: 3885–3894. http://dx.doi.org/10.1093/jxb/err081

Published
2016-07-20
How to Cite
David, T. S., Pinto, C. A., Nadezhdina, N., & David, J. S. (2016). Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning. Forest Systems, 25(2), eR02. https://doi.org/10.5424/fs/2016252-08899
Section
FORESTERRA