Micro-environmental changes induced by shape and size of forest openings: effects on Austrocedrus chilensis and Nothofagus dombeyi seedlings performance in a Pinus contorta plantation of Patagonia, Argentina

Leticia Pafundi, Maria Florencia Urretavizcaya, Guillermo Emilio Defosse


Aim of the study: to analyze, within a Pinus contorta plantation, the effects of artificially created small rectangular and small medium circular canopy gaps on: i) photosynthetic active radiation (PAR), and soil temperature and moisture, and ii) survival and growth of planted Austrocedrus chilensis and Nothofagus dombeyi seedlings, species which formerly composed the natural forest of the area.

Study area: A 2 ha stand of a Pinus contorta stand in Los Alerces National Park, Argentina (42°43’S, 71°43’W, 490 m.a.s.l.).

Material and methods: The Pinus contorta stand was 25 yr old, 22 m height and 26 cm DBH, presenting 1000 trees ha-1 of density and 53 m2 ha-1 of basal area. In 2009, rectangular and circular gaps were created within the stand and then seedlings were planted. During two growing seasons (2010-2011 and 2011-2012), PAR, soil temperature and moisture were measured in gaps and understory (control), and seedling survival and growth in gaps.

Main results: During both seasons, soil temperature did not differ among gaps and control, whereas PAR and soil moisture were lower in control than in gaps. Seedling survival was high in all gaps regardless of species and season. Seedlings showed higher diameter growth in rectangular than in circular gaps.

Research highlights: Austrocedrus chilensis and N. dombeyi seedlings survival is high and their growth slightly affected, when planted in differently-sized canopy gaps within a Pinus contorta plantation in Patagonia. However, other gap sizes and stand densities should be tested before recommending which one shows better results for reconverting monocultures into former native forests.

Keywords: planted seedlings; gap structure; photosynthetic active radiation; soil temperature; soil moisture.

Abbreviations used: PAR (Photosynthetic Active Radiation); DBH (Diameter at Breast Height); INTA (Argentinean Institute of Agricultural Technology); IFONA (Argentinean Forest Institute).


planted seedlings; gap structure; photosynthetic active radiation; soil temperature; soil moisture

Full Text:




Albanesi E, Gugliotta O, Mercurio I, Mercurio R, 2008. Effects of gap size and within-gap position on seedlings establishment in silver fir stands. iForest – Biogeosciences For 1:55–59.

Álvarez Pacheco C, Lara A, 2008. Crecimiento de una plantación joven en fajas con especies nativas en la Cordillera de Los Andes de la provincia de Valdivia. Bosque 29(3): 181–191.

Balzarini M, González L, Tablada M, Casanoves F, Di Rienzo J, Robledo C, 2008. Infostat: manual del usuario. Editorial Brujas, Argentina. 210 pp.

Baron J, Poff N, Angermeier P, Dahm C, Gleick P, Hairston N, Jackson R, Johnston C, Richter B, Steinman A, 2002. Meeting ecological and societal needs for freshwater. Ecol Appl 12: 1247–1260. http://dx.doi.org/10.1890/1051-0761(2002)012[1247:MEASNF]2.0.CO;2

Bava J, 1999. Aportes ecológicos y silviculturales a la transformación de bosques vírgenes de lenga (Nothofagus pumilio (Poepp et Endl.) Krasser) en bosques manejados en el sector argentino de Tierra del Fuego. CIEFAP, Publicación Técnica Nº 29. 138 pp.

Brang P, Von Felten S, Wagner S, 2005. Morning, noon or afternoon: does timing of direct radiation influence the growth of Picea abies seedlings in mountain forests? Ann For Sci 62: 697–705. http://dx.doi.org/10.1051/forest:2005058

Breshears D, Nyhan J, Heil C, Wilcox B, 1998. Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy gaps. Int J Plant Sci 159: 1010–1017. http://dx.doi.org/10.1086/314083

Carlson D, Groot A, 1997. Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric For Meteor 87: 313–329. http://dx.doi.org/10.1016/S0168-1923(95)02305-4

D'Antonio C, Chambers J, 2006. Using ecological theory to manage or restore ecosystems affected by invasive plant species. In: Foundations of restoration ecology (Falk D, Palmer M, Zedler J, eds). Island Press, Washington DC, USA. pp: 260–279.

Defossé G, 1995. Germination, emergence, and survival of Festuca spp. seedlings in a steppe of Patagonia, Argentina. Ph. D. Dissertation. University of Idaho, Idaho, USA.

Defossé G, 2015. ¿Conviene seguir fomentando las plantaciones forestales en el norte de la Patagonia? Ecología Austral 25: 93-100.

Dezzotti A, 1996. Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in northwestern Patagonia, Argentina. For Ecol Manage 89: 125–137.

Dezzotti A, Sbrancia R, Rodríguez Arias M, Roat D, Parisi A, 2003. Regeneración de un bosque mixto de Nothofagus (Nothofagaceae) después de una corta selectiva. Rev Chil Hist Nat 76: 591–602. http://dx.doi.org/10.4067/S0716-078X2003000400004

Donoso Zegers C, 1997. Ecología forestal. El bosque y su ambiente. Editorial Universitaria, Santiago de Chile, Chile. 368 pp.

Donoso P, Soto D, Coopman R, Rodríguez Bertos S, 2013. Early performance of planted Nothofagus dombeyi and Nothofagus alpina in response to light availability and gap size in a high-graded forest in the south-central Andes of Chile. Bosque 34: 23–32. http://dx.doi.org/10.4067/S0717-92002013000100004

Engel V, Parrotta J, 2001. An evaluation of direct seeding for reforestation of degraded lands in central São Paulo state, Brazil. For Ecol Manage 152(1-3): 169–181.

Ericsson T, 1995. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil, 168–169: 205–214. http://dx.doi.org/10.1007/BF00029330

Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T, 2005. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol 183(1): 133–145. http://dx.doi.org/10.1007/s11258-005-9012-4

Gobbi M, 2007. Condiciones de micrositio para juveniles de Austrocedrus chilensis y respuesta a intervenciones extractivas [Microsite conditions in Austrocedrus chilensis saplings and response to extractive practices]. Bosque 28(1): 50–56. http://dx.doi.org/10.4067/S0717-92002007000100008

Gómez Sanz V, 2004. Cubiertas forestales y respuesta microclimática [Forest covers and microclimate response]. Agrar Sist y Recur For, Fuera de serie:84–100.

Gray A, Spies T, Easter M, 2002. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can J For Res 32: 332–343. http://dx.doi.org/10.1139/x01-200

Gyenge J, Fernández ME, Schlichter T, 2007. Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings. Bosque 28: 220–225. http://dx.doi.org/10.4067/S0717-92002007000300006

Harper J, 1977. Population biology of plants. Academic Press, London, UK. 892 pp.

Heinemann K, Kitzberger T, Veblen T, 2000. Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30: 25–31. http://dx.doi.org/10.1139/cjfr-30-1-25

Holst T, Mayer H, 2005. Radiation components of beech stands in Southwest Germany. Meteorol Zeitschrift 14: 107–115. http://dx.doi.org/10.1127/0941-2948/2005/0010

Kimmins J, 1997. Forest Ecology. A foundation for sustainable management. Prentice Hall, Upper Saddle River, USA. 596 pp.

Kitzberger T, Steinaker D, Veblen T, 2000. Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81: 1914–1924. http://dx.doi.org/10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2

Kuuluvainen T, 1994. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: a review. Ann Zool Fennici 31: 35–51.

Letourneau F, 2006. Estudio de las interacciones positivas y negativas sobre el crecimiento de Austrocedrus chilensis durante una etapa inicial de desarrollo, en un matorral sucesional mésico. Tesis doctoral. Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina.

López Bernal P, Arre J, Schlichter T, Bava J, 2010. The effect of incorporating the height of bordering trees on gap size estimations. New Zeal J For Sci 40: 71–81.

Lusk, C, del Pozo A, 2002. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Austral Ecol 27: 173–182. http://dx.doi.org/10.1046/j.1442-9993.2002.01168.x

Mexal J, Landis T, 1990. Target seedling concepts: height and diameter. Target Seedling Symposium. Western Forest Nursery Association, U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Collins. pp 13-17.

McIver J, Starr L, 2001. Restoration of degraded lands in the interior Columbia River basin: passive vs. active approaches. For Ecol Manage 153: 15–28.

Muscolo A, Sidari M, Mercurio R, 2007. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. For Ecol Manage 242(2-3): 412–418.

Muscolo A, Sidari M, Bagnato S, Mallamaci C, Mercurio R, 2010. Gap size effects on above- and below-ground processes in a silver fir stand. Eur J For Res 129: 355–365. http://dx.doi.org/10.1007/s10342-009-0341-z

Muscolo A, Bagnato S, Sidari M, Mercurio R, 2014. A review of the roles of forest canopy gaps. J For Res 25: 725–736. http://dx.doi.org/10.1007/s11676-014-0521-7

Nowacki G, Kramer M, 1998. The effects of wind disturbance on temperate rain forest structure and dynamics of southeast Alaska. General Technical Report PNW-GTR-421. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, USA. 25 pp.

Oke, T, 1988. Street design and urban canopy layer climate. Energy Build 11: 103–113. http://dx.doi.org/10.1016/0378-7788(88)90026-6

Orellana I, Raffaele E, 2010. Especies invasoras en el Parque Nacional Los Alerces. Experiencia piloto para su manejo Patagonia Forestal 16 (2): 9-11.

Pafundi L, Urretavizcaya MF, Defossé G, 2014. Improving survival and growth of planted Austrocedrus chilensis seedlings in disturbed Patagonian forests of Argentina by managing understory vegetation. Environ Manage 54: 1412–1420. http://dx.doi.org/10.1007/s00267-014-0363-2

Paritsis J, Aizen M, 2008. Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. For Ecol Manage 255: 1575–1583.

Park E, Meehye C, Chang-Seok K, 2009. Correct use of repeated measures analysis of variance. Korean J Lab Med 29: 1–9. http://dx.doi.org/10.3343/kjlm.2009.29.1.1

Pearcy R, 1990. Sunflecks and photosysthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41: 421–453. http://dx.doi.org/10.1146/annurev.pp.41.060190.002225

Peel M, Finlayson B, McMahon T, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4: 439–473. http://dx.doi.org/10.5194/hessd-4-439-2007

Rhoades C, Loftis D, Lewis J, Clark, 2009. The influence of silvicultural treatments and site conditions on American chestnut (Castanea dentata) seedling establishment in eastern Kentucky, USA. For Ecol Manage 258: 1211–1218.

SAGyP – INTA, 2013. GEO INTA, Proyecto PNUD ARG/85/019 [GEO INTA, Project PNUD ARG/85/019]. Instituto de Suelos, EEAs del INTA. Available in http://geointa.inta.gov.ar/web/index.php/suelos-de-la-republica-argentina/

Sarasola M, Rusch V, Schlichter T, Ghersa C, 2006. Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la Región Andino Patagónica. Ecología Austral 16: 143–156.

Spies T, Franklin J, 1989. Gap characteristics and vegetation response in coniferous forests of the pacific northwest. Ecology 70: 543–545. http://dx.doi.org/10.2307/1940198

SPSS, 2007. SPSS Statistics Base 17.0 - User's Guide. IBM Company, USA. 616 pp.

Urretavizcaya M, Defossé G, Gonda H, 2012. Effect of sowing season, plant cover and climatic variability on seedling emergence and survival in burned Austrocedrus chilensis forests. Restor Ecol, 20:131-140. http://dx.doi.org/10.1111/j.1526-100X.2010.00728.x

Urretavizcaya M, Defossé G, 2013. Effects of nurse shrubs and tree shelters on the survival and growth of two Austrocedrus chilensis seedling types in a forest restoration trial in semiarid Patagonia, Argentina. Ann For Sci, 70: 21–30. http://dx.doi.org/10.1007/s13595-012-0234-z

Veblen T, Donoso C, Schlegel F, Escobar B, 1981. Forest dynamics in south-central Chile. J Biogeogr 8: 211–247. http://dx.doi.org/10.2307/2844678

Veblen T, 1989. Nothofagus regeneration in tree gaps in northern Patagonia. Can J For Res 19: 365–371. http://dx.doi.org/10.1139/x89-055

Whisenant SG, 1999. Wildland degradation and repair. In: Repairing damaged wildlands. A Process-oriented, landscape-scale approach (Whisenant SG, ed). Cambridge University Press, Cambridge, UK. pp: 1-20. http://dx.doi.org/10.1017/CBO9780511612565.002

Zhu J, Matsuzaki T, Lee F, Gonda Y, 2003. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. For Ecol Manage 182: 339–354.

Zhu J, Lu D, Zhang W, 2014. Effects of gaps on regeneration of woody plants: a meta-analysis. J For Res 25: 501–510. http://dx.doi.org/10.1007/s11676-014-0489-3

Zúñiga R, Alberdi M, Reyes-Díaz M, Olivares E, Hess S, Bravo L, Corcuera L, 2006. Seasonal changes in the photosynthetic performance of two evergreen Nothofagus species in south central Chile. Rev Chil Hist Nat 79: 489–504.

DOI: 10.5424/fs/2016253-08971

Webpage: www.inia.es/Forestsystems