Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory

  • Celia Herrero Sustainable Forest Management Institute University of Valladolid-INIA. ETS Ingenierías Agrarias. University of Valladolid. Avda. Madrid 44, 34071. Palencia, Spain. ECM Environment Engineering. Palencia. http://orcid.org/0000-0002-7061-5110
  • Vicente José Monleon Resource Monitoring and Analysis Program. USDA Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis.
  • Natividad Gómez Basartea SL. Red Nemoris AIE. Polígono Ezkabarte nave M1 31194 Arre, Navarra.
  • Felipe Bravo Sustainable Forest Management Institute University of Valladolid-INIA. ETS Ingenierías Agrarias. University of Valladolid. Palencia.
Keywords: snags, downed logs, stumps, fine woody debris, beech, line intersect sampling

Abstract

Aim of study: The aim of this study was to 1) estimate the amount of dead wood in managed beech (Fagus sylvatica L.) stands in northern Iberian Peninsula and 2) evaluate the most appropriate volume equation and the optimal transect length for sampling downed wood.

Area of study: The study area is the Aralar Forest in Navarra (Northern Iberian Peninsula).

Material and methods: The amount of dead wood by component (downed logs, snags, stumps and fine woody debris) was inventoried in 51 plots across a chronosequence of stand ages (0-120 years old).

Main results: The average volume and biomass of dead wood was 24.43 m3 ha-1 and 7.65 Mg ha-1, respectively. This amount changed with stand development stage [17.14 m3 ha-1 in seedling stage; 34.09 m3 ha-1 inpole stage; 22.54 m3 ha-1 in mature stage and 24.27 m3 ha-1 in regular stand in regeneration stage], although the differences were not statistically significant for coarse woody debris. However, forest management influenced the amount of dead wood, because the proportion of mass in the different components and the decay stage depended on time since last thinning. The formula based on intersection diameter resulted on the smallest coefficient of variation out of seven log-volume formulae. Thus, the intersection diameter is the preferred method because it gives unbiased estimates, has the greatest precision and is the easiest to implement in the field.

Research highlights: The amount of dead wood, and in particular snags, was significantly lower than that in reserved forests. Results of this study showed that sampling effort should be directed towards increasing the number of transects, instead of increasing transect length or collecting additional piece diameters that do not increase the accuracy or precision of DWM volume estimation.

Keywords: snags; downed logs; stumps; fine woody debris; beech; line intersect sampling.

Downloads

Download data is not yet available.

References

References

Ammer U, 1991. Konsequenzenaus den Ergebnissen der Totholzforschungfür die forstliche Praxis. ForstwCbl 110: 149–157.

Angelstam PK, Butler R, Lazdinis M, Mikusinski G, Roberge JM, 2003. Habitat thresholds for focal species at multiple scales and forest biodiversity conservation—dead wood as an example. Annales Zoologici Fennici 40: 473–484.

Bauhus J, Puettmann K, Messier C, 2009. Silviculture for old-growth attributes. Forest Ecol Manag 258: 525-537. http://dx.doi.org/10.1016/j.foreco.2009.01.053

Bell G, Kerr A, McNickle D, Woollons R, 1996. Accuracy of the line intersect method of post-logging sampling under orientation bias. Forest Ecol Manag 84: 23–28. http://dx.doi.org/10.1016/0378-1127(96)03773-5

Bilek L, Remes J, Zahradnik D, 2011. Managed vs. unmanaged. structure of beech forest stands (Fagus sylvatica L.) after 50 years of development, Central Bohemia. Forest Systems 20(1): 122-138. http://dx.doi.org/10.5424/fs/2011201-10243

BMLFW Hrsg, 2007. Indikatoren, Ist-Grosen und Soll-Grosen-Vorschlage. Arbeitspapier, Stand 3, pp. 101.

Bretz Guby NA, Dobbertin M, 1996. Quantitative estimates of coarse woody debris and standing dead trees in selected Swiss forests. Global Ecol Biogeogr 5: 327–341. http://dx.doi.org/10.2307/2997588

Canadian Forest Inventory Committee (CFIC), 2008. Canada’s National Forest Inventory—Ground sampling guidelines version 5.0.

https://nfi.nfis.org/resources/groundplot/Gp_guidelines_v5.0.pdf

Christensen M, Hahn K, Mountford EP, Odor P, Standovar T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P et al., 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecol Manag 210: 267-282. http://dx.doi.org/10.1016/j.foreco.2005.02.032

Cochran WG, 1977. Sampling techniques. John Wiley & Sons, New York, New York, USA. 428 pp.

Commarmot B, Bachofen H, Bundziak Y, Burgi A, Ramp B, Shparyk Y, Sukhariuk D, Viter R, Zingg A, 2005. Structure of virgin and managed beech forests in Uholka (Ukraine) and Sihlwald (Switzerland): a comparative study. For Snow Landscape Res 79: 45–56.

Duvall MD, Grigal DF, 1999. Effects of timber harvesting on coarse woody debris in red pine forests across the Great Lakes states, U.S.A. Can J Forest Res 29: 1926–1934. http://dx.doi.org/10.1139/x99-158

Eskelson BNI, Monleon VJ, Fried JS, 2016. A six-year longitudinal analysis of post-fire woody carbon dynamics in California's forests. Can J Forest Res 46: 610-620. http://dx.doi.org/10.1139/cjfr-2015-0375

Franklin JF, Berg DR, Thornburgh DA, Tappeiner JC, 1997. Alternative silvicultural approaches to timber harvesting: variable retention harvest systems. In: Creating a Forestry for the 21st Century: The Science of Ecosystem Management; Kohn KA, Franklin JF (eds). pp. 111–139. Island Press, Washington, USA.

Fraver S, Ringvall A, Jonsson BG, 2007. Refining volume estimates of down woody debris. Can J Forest Res 37: 627-633. http://dx.doi.org/10.1139/X06-269

Goodburn JM, Lorimer CG, 1998. Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan. Can J Forest Res 28: 427-438. http://dx.doi.org/10.1139/x98-014

Graves AT, Fajvan MA, Miller GW, 2000. The effects of thinning intensity on snag and cavity tree abundance in an Appalachian hardwood stand. Can J Forest Res 30: 1214–1220. http://dx.doi.org/10.1139/x00-051

Green P, Peterken GF, 1997. Variation in the amount of dead wood in the woodlands of the Lower Wye Valley UK, in the relation to the intensity of management. Forest Ecol Manag 98: 229–238. http://dx.doi.org/10.1016/S0378-1127(97)00106-0

Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, et al., 1986. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15: 133-302. http://dx.doi.org/10.1016/S0065-2504(08)60121-X

Harmon ME, 2009. Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In: Ecological Studies, vol. 207: Old-Growth Forests; Wirth C, Gleixner G, Heimann M (eds). pp. 159–190. Springer, Berlin Heidelberg, Germany.

Hernando A, Rosario R, García A, Pérez A, Arrechea E, 2013. La madera muerta como indicador del estado de conservación de los habitats de la Red Natura. VI Congreso Forestal Español. Gazteiz. 6CFE01-045.

Herrero C, Pando V, Bravo F, 2010. Modelling coarse woody debris in Pinusspp. plantations. A case study in Northern Spain. Ann Forest Sci 67: 708-716. http://dx.doi.org/10.1051/forest/2010033

Herrero C, Krankina O, Monleon V, Bravo F, 2014. Amount and distribution of CWD in pine ecosystems of Northwest Spain, NW Russia and NW United States. IForest 7: 53-60. http://dx.doi.org/10.3832/ifor0644-007

Husch B, Miller CI, Beers TW, 1972. Forest Mensuration, 2nd Ed. The Ronald press Co., New York, NY, USA. 410 pp.

Kaiser L, 1983. Unbiased Estimation in Line-Intercept. Sampling in Biometrics 39: 965-976. http://dx.doi.org/10.2307/2531331

Keeton WS, Franklin JF, 2005. Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests?. Ecol Monogr 75: 103-118. http://dx.doi.org/10.1890/03-0626

Kucbel S, Saniga M, Jaloviar P, Vencurik J, 2012. Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: A 40-years perspective. Forest Ecol Manag 264: 125–133. http://dx.doi.org/10.1016/j.foreco.2011.10.011

Kuehne C, Donath C, Müller-Using SI, Bartsch N, 2008. Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Can J Forest Res 38: 2405-2413. http://dx.doi.org/10.1139/X08-088

Kruys N, Jonsson BG, 1999. Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Can J Forest Res 29: 1295–1299. http://dx.doi.org/10.1139/x99-106

Lombardi F, Lasserre B, Tognetti R, Marchetti M, 2008. Dead wood in relation to stand management and forest type in Central Apennines (Molise, Italy). Ecosystems 11: 882–894. http://dx.doi.org/10.1007/s10021-008-9167-7

Lombardi F, Chirici G, Marchetti M, Tognetti R, Lasserre B, Corona P, Barbati A, Ferrari B, Di Paolo S, et al., 2010. Dead wood in forest stands close to old-growthness under Mediterranean conditions in the Italian Peninsula. Italian Journal of Forest and Mountain Environments 65: 481-504. http://dx.doi.org/10.4129/ifm.2010.5.02

Marage D, Lemperiere G, 2005. The management of snags: A comparison in managed and unmanaged ancient forests of the Southern French Alps. Ann Forest Sci 62: 135-142. http://dx.doi.org/10.1051/forest:2005005

Martiarena A, 2007. Caracterización de la madera muerta tumbada en hayedos del Pirineo Navarro. Proyecto Fin de Carrera de Ingeniería Técnica Agrícola, Universidad Pública de Navarra, Pamplona, Spain. pp. 121.

McComb W, Lindenmayer D, 1999. Dying, dead, and down trees. In: Maintaining Biodiversity in Forest Ecosystems; Malcon L, Hunter JR (eds). pp. 335-372. Cambridge University Press, England. http://dx.doi.org/10.1017/CBO9780511613029.012

Monleon VJ, 2008. An assessment of the impact of FIA's default assumptions on the estimates of coarse woody debris volume and biomass. In: Forest Inventory and Analysis Symposium 2008 Proceedings; McWilliams W, Moisen G, Czaplewski R (eds).RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD.

Montero G, Ruiz-Peinado R, Muñoz M, 2005. Producción de biomasa y fijación de CO2 por parte de los bosques españoles. Monografías INIA: Serie Forestal nº 13, Madrid, Spain. 270 pp.

Mountford EP, 2002. Fallen dead wood levels in the near-natural beech forest at La Tillaie reserve, Fontainebleau. France Forest 75: 203–208. http://dx.doi.org/10.1093/forestry/75.2.203

Müller J, Strätz C, Hothorn T, 2005. Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. Eur J Forest Res 124: 233–242. http://dx.doi.org/10.1007/s10342-005-0071-9

Nordén B, Götmark F, Tönnberg M, Ryberg M, 2004. Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. Forest Ecol Manag 194: 235–248. http://dx.doi.org/10.1016/j.foreco.2004.02.043

Odor P, Standovar T, 2003. Changes of physical and chemical properties of dead wood during decay (Hungary). The Nat Man Project, Working Report, 23: 29.

Ozcelik R, Wiant HV Jr, Brooks JR, 2006. Estimating log volumes of three tree species in Turkey by six formulae. Forest Prod J 56: 11-12.

Paletto A, Ferretti F, De Meo I, Cantiani P, Focacci M, 2012. Ecological and Environmental Role of Deadwood in Managed and Unmanaged Forests. In: Sustainable Forest Management - Current Research; Diez J (ed). pp 219-238. InTech, Available at: http://www.intechopen.com/books/sustainable-forest-management-current-research

Paletto A, De Meo I, Cantiani P, Ferretti F, 2014. Effects of forest management on the amount of dead wood in Mediterranean oak ecosystems. Ann Forest Sci 71(7): 791-800. http://dx.doi.org/10.1007/s13595-014-0377-1

Piovesan G, di Filippo A, Alessandrini A, Biondi F, Schironi B, 2002. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apenines. J Veg Sci 16: 13–28.

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Richards FJ, 1959. A flexible growth function for empirical use. J Exp Bot 10: 290-300. http://dx.doi.org/10.1093/jxb/10.2.290

Rouvinen S, Rautiainen A, Kouki J, 2005. A relation between historical forest use and current dead woodymaterial in a boreal protected oldgrowth forest in Finland. Silva Fenn 39: 21–36. http://dx.doi.org/10.14214/sf.393

SAS Institute Inc., 2014. SAS/STATTM User's Guide, Relase 9.1. Cary, NC, USA.

Schiegg K, 2001. Saproxylic insect diversity of beech: limbs are richer than trunks. Forest Ecol Manag 149: 295–304. http://dx.doi.org/10.1016/S0378-1127(00)00563-6

Siitonen J, 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–42.

Siitonen J, Martikainen P, Punttila P, Rauh J, 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag 128: 211–225. http://dx.doi.org/10.1016/S0378-1127(99)00148-6

Sollins P, 1982. Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Can J Forest Res 12: 18-28. http://dx.doi.org/10.1139/x82-003

Spies TA, Franklin JF, Thomas TB, 1988. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69: 1689–1702. http://dx.doi.org/10.2307/1941147

Sturtevant BR, Bissonette JA, Long JN, Roberts DW, 1997. Coarse woody debris as a function of age stand structure, and disturbance in boreal Newfoundland. Ecol Appl 7(2): 702-712. http://dx.doi.org/10.1890/1051-0761(1997)007[0702:CWDAAF]2.0.CO;2

Vacek S, Vacek Z, Bílek L, Hejcmanová P, Štícha V, RemeŠ J, 2015. The dynamics and structure of dead wood in natural spruce-beech forest stand – a 40 year case study in the Krkonoše National Park. Dendrobiology 73: 21-32. http://dx.doi.org/10.12657/denbio.073.003

Vandekerkhove K, Keersmaeker LD, Menke N, Meyer P, Verschelde P, 2009. When nature takes over from man: Dead wood accumulation in previously. Forest Ecol Manag 258: 425–435. http://dx.doi.org/10.1016/j.foreco.2009.01.055

Verkerk PJ, Lindner M, Zanchi G, Zudin S, 2011. Assessing impacts of intensified biomass removal on deadwood in European forests. Ecol Ind 11 (1): 27–35. http://dx.doi.org/10.1016/j.ecolind.2009.04.004

van Wagner CE, 1968. The line intersect method for forest fuel sampling. Forest Sci. 14: 20–26.

Von Oheimb G, Westphal C, Härdtle W, 2007. Diversity and spatiotemporal dynamics of dead wood in a temperate near-natural beech forest (Fagus sylvatica). Eur J Forest Res 126: 359–370. http://dx.doi.org/10.1007/s10342-006-0152-4

Warren WG, Olsen PF, 1964. A line-intersect technique for assessing logging waste. Forest Sci 10: 267-276.

Williams MS, Gove JH, 2003. Perpendicular distance sampling: an alternative method for sampling downed coarse woody debris. Can J Forest Res 33, 1564-1579. http://dx.doi.org/10.1139/x03-056

Woldendorp G, Keenan RJ, Barry S, Spencer RD, 2004. Analysis of sampling methods for coarse woody debris. Forest Ecol Manag 198: 133–148. http://dx.doi.org/10.1016/j.foreco.2004.03.042

Woodall CW, Liknes GC, 2007. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects. Ecol Ind 8: 686–690. http://dx.doi.org/10.1016/j.ecolind.2007.11.002

Woodall CW, Monleon VJ, 2008. Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA Program, 2nd edition. Gen. Tech. Rep. NRS-GTR-22, St. Paul, Minnesota, USA.126 pp.

Woodall CW, Rondeux J, Verkerk PJ, Stahl G, 2009. Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization. Environ Manag 44: 624-631. http://dx.doi.org/10.1007/s00267-009-9358-9

Published
2016-12-02
How to Cite
Herrero, C., Monleon, V. J., Gómez, N., & Bravo, F. (2016). Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory. Forest Systems, 25(3), e069. https://doi.org/10.5424/fs/2016253-09009
Section
Research Articles