Mapping invasive alien Acacia dealbata Link using ASTER multispectral imagery: a case study in central-eastern of Portugal

Filipe Martins, Cristina Alegria, Gil Artur

Abstract


Aim of the study: Acacia dealbata is an alien invasive species that is widely spread in Portugal. The main goal of this study was to produce an accurate and detailed map for this invasive species using ASTER multispectral imagery.

Area of study: The central-eastern zone of Portugal was used as study area. This whole area is represented in an ASTER scene covering about 321.1 x 103 ha.

Material and methods: ASTER imagery of two dates (flowering season and dry season) were classified by applying three supervised classifiers (Maximum Likelihood, Support Vector Machine and Artificial Neural Networks) to five different land cover classifications (from most generic to most detailed land cover categories). The spectral separability of the land cover categories was analyzed and the accuracy of the 30 produced maps compared.

Main results: The highest classification accuracy for acacia mapping was obtained using the flowering season imagery, the Maximum Likelihood classifier and the most detailed land cover classification (overall accuracy of 86%; Kappa statistics of 85%; acacia class Kappa statistics of 100%). As a result, the area occupied by acacia was estimated to be approximated 24,770 ha (i.e. 8% of the study area).

Research highlights: The methodology explored proved to be a cost-effective solution for acacia mapping in central-eastern of Portugal. The obtained map enables a more accurate and detailed identification of this species’ invaded areas due to its spatial resolution (minimum mapping unit of 0.02 ha) providing a substantial improvement comparably to the existent national land cover maps to support monitoring and control activities.

Keywords: remote sensing; invasive alien species; land cover mapping; vegetation mapping.


Keywords


remote sensing; invasive alien species; land cover mapping; vegetation mapping.

Full Text:

PDF HTML XML

References


References

Adler-Golden SM, Matthew MW, Bernstein LS, Levine RY, Berk A, Richtsmeier SC, Acharya PK, Anderson GP, Felde G, Gardner J et al., 1999. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. Proc. of SPIE's International Symposion on Optical Science, Engineering and Instrumentation, International Society for Optics and Photonics. pp: 61-69.

AFN, 2010. FloreStat. Aplicação para consulta dos resultados do 5º Inventário Florestal Nacional. AFN – Autoridade Florestal Nacional, Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. http://www.icnf.pt/portal/florestas/ifn/ifn5/

Andrew ME, Ustin SL, 2009. Habitat suitability modelling of an invasive plant with advanced remote sensing data. Divers Distrib 15: 627-640. http://dx.doi.org/10.1111/j.1472-4642.2009.00568.x

Arán D, García-Duro J, Reyes O, Casal M, 2013. Fire and invasive species: Modifications in the germination potential of Acacia melanoxylon, Conyza canadensis and Eucalyptus globulus. For Ecol Manage 302: 7–13.

Asner GP, 2008. Hyperspectral remote sensing of canopy chemistry, physiology and diversity in tropical rainforests. In: Hyperspectral Remote Sensing of Tropical and Subtropical Forests; Kalacska M, Sanchez-Azofeifa GA (eds.). Taylor and Francis, Oxon, UK. pp: 261-288. http://dx.doi.org/10.1201/9781420053432.ch12

Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF, 2008. Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112: 1912-1926. http://dx.doi.org/10.1016/j.rse.2007.02.043

Bradley BA, 2014. Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invasions 16: 1411-1425. http://dx.doi.org/10.1007/s10530-013-0578-9

Bradley BA, Mustard JF, 2006. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16: 1132-1147. http://dx.doi.org/10.1890/1051-0761(2006)016[1132:CTLDOA]2.0.CO;2

Caetano M, Nunes V, Nunes A, 2009. CORINE Land Cover 2006 for Continental Portugal, Technical Report, Lisbon, Portugal. Instituto Geografico Português. 81 pp.

Cobbing BL, 2007. The use of Landsat ETM imagery as a suitable data capture source for alien Acacia species for the WFW programme. Master thesis. Rhodes University, Rhodes, Greece.

Congalton RG, 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 49: 1671-1678. http://dx.doi.org/10.1016/0034-4257(91)90048-b

Congalton RG, 2001. Accuracy assessment and validation of remotely sensed and other spatial information. Int J Wildl Fire 10(4): 321-328. http://dx.doi.org/10.1071/WF01031

Congalton RG, Green K, 1999. Assessing the accuracy of remotely sensed data: principles and practices. New York, USA. Lewis Publishers. 200 pp.

Costa H, Bettencourt MJ, Silva CMN, Teodósio J, Gil A, Silva L, 2013. Invasive alien plants in the Azorean protected areas: invasion status and mitigation actions. In: Plant Invasions in Protected Areas; Foxcroft LC, Richardson DM, Pyšek P, Genovesi P (eds.). Springer, The Netherlands. pp. 375-394. http://dx.doi.org/10.1007/978-94-007-7750-7_17

Costa H, Ponte NB, Azevedo EB, Gil A, 2015. Fuzzy set theory for predicting the potential distribution and cost-effective monitoring of invasive species. Ecol Model 316: 22-132. http://dx.doi.org/10.1016/j.ecolmodel.2015.07.034

D'Antonio CM, Vitousek PM, 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23: 63−87. http://dx.doi.org/10.1146/annurev.es.23.110192.000431

DGT, 2007. COS 2007 - Carta de Ocupação do Solo 2007 Nível 2 para Portugal Continental. Lisboa, Portugal. DGT – Direção-Geral do Território. http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/cos/cos__2007/

Ehrenfeld JG, 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503-523. http://dx.doi.org/10.1007/s10021-002-0151-3

Filippi AM, Jensen JR, 2006. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens Environ 100: 512-30. http://dx.doi.org/10.1016/j.rse.2005.11.007

Foody GM, Mathur A, 2004. A relative evaluation of multiclass image classification by support vector machines. IEEE T Geosci Remote 42: 1336–1343. http://dx.doi.org/10.1109/TGRS.2004.827257

Fuentes-Ramirez A, Pauchard A, Cavieres LA, García RA, 2011. Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. For Ecol Manage 261: 1003-1009.

Gil A, Fonseca C, Lobo A, Calado H, 2012. Linking GMES Space Component to the development of land policies in Outermost Regions - the Azores (Portugal) case-study. Eur J Remote Sens 45: 263-281. http://dx.doi.org/10.5721/EuJRS20124524

Gil A, Lobo A, Abadi M, Silva L, Calado H, 2013. Mapping invasive woody plants in Azores Protected Areas by using very high-resolution multispectral imagery. Eur J Remote Sens 46: 289-304. http://dx.doi.org/10.5721/EuJRS20134616

Gil A, Yu Q, Abadi M, Calado H, 2014. Using ASTER multispectral imagery for mapping woody invasive species in Pico da Vara Natural Reserve (Azores Islands, Portugal). Rev Árvore 38: 391-401. http://dx.doi.org/10.1590/S0100-67622014000300001

Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S, 2008. Measuring and modelling biodiversity from space. Prog Phys Geo 32: 203-221. http://dx.doi.org/10.1177/0309133308093606

Godinho-Ferreira P, Azevedo A, Rego F, 2005. Carta da tipologia florestal de Portugal Continental. Silva Lusit 13(1): 1-34.

González-Muñoz N, Costa-Tenorio M, Espigares T, 2012. Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. For Ecol Manage 269: 214-221.

Gutierres F, Gil A, Reis E, Lobo A, Neto C, Calado H, Costa JC, 2011. Acacia saligna (Labill.) H. Wendl in the Sesimbra Council: Invaded habitats and potential distribution modeling. J Coastal Res SI 64: 403-407.

Huang C, Asner G, 2009. Applications of remote sensing to alien invasive plant studies. Sensors 9: 4869-4889. http://dx.doi.org/10.3390/s90604869

Hughes FR, Denslow JS, 2005. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol Appl 15: 1615-1628. http://dx.doi.org/10.1890/04-0874

Hughes FR, Vitousek PM, Tunison T, 1991. Alien grass invasion and fire in the seasonal submontane zone of Hawai'i. Ecology 72: 743-746. http://dx.doi.org/10.2307/2937215

ICNF, 2013. IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Lisboa, Portugal. ICNF – Instituto da Conservação da Natureza e das Florestas. http://www.icnf.pt/portal/florestas/ifn/ifn6

Immitzer M, Vuolo F, Atzberger C, 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens 8(3): 166. http://dx.doi.org/10.3390/rs8030166

Jensen J, 1996. Introductory Digital Image Processing: a Remote Sensing Perspective. Englewood Cliffs, New Jersey, USA. Prentice-Hall. 316 pp.

Joshi C, De Leeuw J, Van Andel J, Skidmore AK, Lekhak HD, Van Duren IC, Norbu N, 2006. Indirect remote sensing of a cryptic forest understorey invasive species. For Ecol Manage 225: 245-256.

Joshi C, Leeuw JD, Van Duren IC, 2004. Remote sensing and GIS applications for mapping and spatial modelling of invasive species. Proc. ISPRS, Istanbul, July 12-23. pp: 669-677.

Keeley JE. 2006. Fire management impacts on invasive plants in the Western United States. Conserv Biol 20: 375–384. http://dx.doi.org/10.1111/j.1523-1739.2006.00339.x

Lawes RA, Wallace JF, 2008. Monitoring an invasive perennial at the landscape scale with remote sensing. Ecol Manage Restor 9: 53-59. http://dx.doi.org/10.1111/j.1442-8903.2008.00387.x

Le Maitre DC, Gaertner M, Marchante E, Ens E, Holmes PM, Pauchard A, O'Farrell PJ, Rogers AM, Blanchard R, Blignaut J et al., 2011. Impacts of invasive Australian acacias: Implications for management and restoration. Divers Distrib 17: 1015-1029. http://dx.doi.org/10.1111/j.1472-4642.2011.00816.x

Lorenzo P, Gonzalez L, Reigosa M, 2010. The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67: 101-112. http://dx.doi.org/10.1051/forest/2009082

Marchante H, E Marchante, H Freitas. 2005. Invasive plant species in Portugal: an overview. Proc. of the International Workshop on Invasive Plants in Mediterranean Type Regions of the World. Montpellier, France. Council of Europe Publishing. pp: 99-103.

May BM, Attiwill PM, 2003. Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For Ecol Manage 181: 339-355.

Parker IM, D Simberloff, WM Lonsdale et al. 1999. Impact: toward a framework for understanding the ecological effect of invaders. Biol Invasions 1: 3–19. http://dx.doi.org/10.1023/A:1010034312781

Pauchard A, Maheu-Giroux M, 2007. Case study 11.1: Acacia dealbata invasion across multiple scales: Conspicuous flowering species can help us study invasion pattern and processes. In: Sourcebook on Remote Sensing and Biodiversity Indicators; Strand H, Höft R, Strittholt J, Miles L, Horning N, Fosnight E (eds.). pp: 166-167. CBD Technical Series 32. Montreal.

Pauchard A, Shea K, 2006. Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8: 399-413. http://dx.doi.org/10.1007/s10530-005-6419-8

Pereira J, Figueiredo A, 2015. Assessing suitable area for Acacia dealbata Mill. in the Ceira River Basin (Central Portugal) based on maximum entropy modelling approach. GOT - Revista de Geografia e Ordenamento do Território 8: 171-190.

Pimentel D, Zuniga R, Morrison D, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52: 273-288. http://dx.doi.org/10.1016/j.ecolecon.2004.10.002

Resasco J, Hale AN, Henry MC, Gorchov DL, 2007. Detecting an invasive shrub in a deciduous forest understory using late fall Landsat sensor imagery. Int J Remote Sens 28: 3739-3745. http://dx.doi.org/10.1080/01431160701373721

Richards JA, 2013. Remote Sensing Digital Image Analysis. Berlin, Germany. Springer. 496 pp. http://dx.doi.org/10.1007/978-3-642-30062-2

Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ, 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6: 93-107. http://dx.doi.org/10.1046/j.1472-4642.2000.00083.x

Richardson DM, Rejmánek M, 2011. Trees and shrubs as invasive alien species - a global review. Divers Distrib 17: 788-809. http://dx.doi.org/10.1111/j.1472-4642.2011.00782.x

Souza-Alonso P, Lorenzo P, Rubido-Bará M, González L, 2013. Effectiveness of management strategies in Acacia dealbata Link invasion, native vegetation and soil microbial community responses. For Ecol Manage 304: 464-472.

Underwood E, Ustin S, 2007. Chapter 11. Trends in Invasive Alien Species. In: Sourcebook on Remote Sensing and Biodiversity Indicators; Strand H, Höft R, Strittholt J, Miles L, Horning N, Fosnight E (eds.). pp. 161-177. CBD Technical Series 32. Montreal.

Underwood E, Ustin S, DiPietro D, 2003. Mapping non-native plants using hyperspectral imagery. Remote Sens Environ 86: 150-161. http://dx.doi.org/10.1016/S0034-4257(03)00096-8

Van de Wouw P, Echeverría C, Rey-Benayas JM, Holmgren M, 2011. Persistent acacia savannas replace Mediterranean sclerophyllous forests in South America. For Ecol Manage 262: 1100-1108.

Vazquez-de-la-Cueva A, 2014. Case studies of the expansion of Acacia dealbata in the valley of the river Miño (Galicia, Spain). Forest Syst 23: 3-14. http://dx.doi.org/10.5424/fs/2014231-02531

Viana H, Aranha J, 2010. Mapping invasive species (Acacia dealbata Link) using ASTER / TERRA and LANDSAT 7 ETM + imagery. Proc. IUFRO Landscape Ecology Working Group International Conference. Bragança. pp: 443-448.

Xu M, Watanachaturaporn P, Varshney PK, Arora MK, 2005. Decision tree regression for soft classification of remote sensing data. Remote Sens Environ 97: 322-36. http://dx.doi.org/10.1016/j.rse.2005.05.008

Yamashita N, Ishida A, Kushima H, Tanaka N, 2000. Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia 125: 412-419. http://dx.doi.org/10.1007/s004420000475




DOI: 10.5424/fs/2016253-09248

Webpage: www.inia.es/Forestsystems