Effectiveness of native arbuscular mycorrhiza on the growth of four tree forest species from the Santa Marta Mountain, Veracruz (Mexico)

Yolanda Retama-Ortiz, Carlos H. Ávila-Bello, Alejandro Alarcón, Ronald Ferrera-Cerrato

Abstract


Aim of the study: The aim of this work was to isolate consortia of arbuscular mycorrhizal fungi (AMF) associated to Liquidambar styraciflua in soils of the Santa Marta Mountain in Veracruz, and to select highly effective mycorrhizal consortia on promoting the growth of four tree forest species with economic and ecological importance.

Area of study: Santa Marta Mountain, inside the buffer area of the Los Tuxtlas Biological Reserve in Veracruz (México).

Materials and methods: Ten composite samples of rhizosphere soil were collected from L. styraciflua trees of 13-15 cm DBH (diameter at breast height). Roots were fixed in FAA solution to determine the mycorrhizal colonization percentage, the abundance of morphospecies, and its effectiveness in promoting the growth of L. styraciflua, Terminalia amazonia, Cordia alliodora, and Cojoba arborea. Soil physical and chemical characteristics were also analysed, and soil type recognition was performed with the Reference Base for Soil FAO-ISRIC World-SICS. Mycorrhizal colonization was determined by the method of clearing and staining roots with trypan blue; total percentage of colonization was estimated by the Linderman-Biermann method. Spores were extracted for counting and identifying morphospecies from each soil sample, those with more effectiveness were selected and inoculated in the four tree species, based upon a completely random design there were evaluated height, number of leaves, total dry weight and foliar area.

Main results: Average mycorrhizal colonization percentage was 45% from natural conditions, samples one and four showed 80% of AMF-colonization. Average number of spores was 617 in 100 g-1 of dry soil. Forty-seven AMF-morphospecies were identified. After eight months significant differences were observed in root colonization, height, number of leaves, total dry weight, leaf area and foliar analysis of N5+, P5+ and K+ on plants inoculated with rhizosphere samples of L. styraciflua. Terminalia amazonia and Cojoba arborea showed greater response to the inoculation of AMF, they showed more height, number of leaves and more total dry weight; whereas C. alliodora appears to be low dependent on AMF.

Highlights: Diversispora aurantia and Glomus aggregatum are reported by the first time from Mexican humid tropics. Native AMF have potential biotechnological application. The mycorrhizal consortium six (Glomus and Acaulospora) was the more effective in promoting the development of the four tree species used in the experiment.


Keywords


Arbuscular mycorrhiza, liquidambar, cordia, terminalia, cojoba, México.

Full Text:

PDF HTML XML

References


Abd-Alla MH, Omar SA, Karanxha S, 2000. The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14: 191–200. https://doi.org/10.1016/S0929-1393(00)00056-1

Alarcón A, Ferrera-Cerrato R, Pérez-Moreno J, 2007a. Mycorrhizae in tropical agriculture. In: Mycorrhizae in crop production (Hamel C, Plenchette C, eds). The Haworth Press. New York, NY, USA. pp: 197-238.

Alarcón A, González-Chávez MC, Ferrera-Cerrato R, 2007b. Aspectos ecológicos y aplicación de hongos micorrízicos arbusculares en agroecosistemas. In: Ecología de la Raíz 2007 (Fuentes-Dávila G., Ferrera-Cerrato R. eds). Soc Mexicana Fitopatología, A. C. Segunda edición. Mexico. pp: 27-56.

Aldrich-Wolfe L, 2007. Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88(3): 559-566. https://doi.org/10.1890/05-1177

Allen, EB, Rincón E, Allen MF, Pérez–Jiménez A, Huante P, 1998. Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30: 261–274. https://doi.org/10.1111/j.1744-7429.1998.tb00060.x

Allen BE, Allen MF, Egerton-Warburton L, Corkidi L, Gómez-Pompa A, 2003. Impacts of early-and late-seral mycorrhizae during restoration in seasonal tropical forest Mexico. Ecol Appl 13: 1701-1717. https://doi.org/10.1890/02-5309

Álvarez-Sánchez J, Guadarrama P, Sánchez-Gallen I, Olivera D, 2007. Restauración de ambientes deteriorados derivados de la selva tropical húmeda: El uso de los hongos micorrizógenos arbusculares. Bol Soc Botánica México 80: 59-68.

American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

Ávila-Bello CH, Hernández-Romero AH, Cuevas D MC, Ruiz A C, Carmona DG, Ledesma AM, 2012. Agua, suelo, vegetación y población: hacia la sustentabilidad de la subcuenca del río Huazuntlán, Veracruz. In: Las inundaciones de 2010 en Veracruz. La biosfera, escenarios y herramientas (Tejeda MA coord). COVECYT. Universidad Veracruzana. FOMIX. Xalapa, Veracruz pp: 14-41.

Bago B, Pfeffer P, Schachar-Hill Y, 2000. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytologist 149: 4-8. https://doi.org/10.1046/j.1469-8137.2001.00016.x

Biermann BJ, Linderman RG, 1981. Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytologist 87: 63-67. https://doi.org/10.1111/j.1469-8137.1981.tb01690.x

Barrows HL, Simpson EC, 1962. An EDTA method for the direct routine determination of calcium and magnesium in soils and plant tissue. Soil Science Society of America Journal 26: 443-445. https://doi.org/10.2136/sssaj1962.03615995002600050012x

Bray RH, Kurtz LT, 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59: 39-45. https://doi.org/10.1097/00010694-194501000-00006

Caballero L, Cortés R, 1991. Rendimiento de Cordia alliodora Oken por acción de cinco hongos de MVA. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. Separata. 10789. 3 (9): 43-53.

Camargo-Ricalde SL, Dhillion S, Jiménez G, 2003. Mycorrhizal perennials of the "matorral xerófilo" and the "selva baja caducifolia" communities in the semiarid Tehuacán-Cuicatlán Valley, México. Mycorrhiza 13: 77-83. https://doi.org/10.1007/s00572-002-0203-8

Castillo CA, 2004. El suelo. In: Los Tuxtlas. El paisaje de la sierra (Guevara S, Laborde J, Sánchez-Ríos G eds). Instituto de Ecología, A.C. y Unión Europea. Xalapa Veracruz. pp: 182-192.

Castillo CG, Laborde J, 2006. La Vegetación. In: Los Tuxtlas. El paisaje de la sierra (Guevara S, Laborde J, Sánchez RG eds). Instituto de Ecología, A.C. y Unión Europea. Xalapa, Veracruz. pp: 231-269.

CONANP, 2006. Programa de Conservación y Manejo de la Reserva de la Biosfera de Los Tuxtlas. Comisión Nacional de Áreas Naturales Protegidas. México, D.F.

CONABIO, 1994. Liquidambar styraciflua L. Available in http://www.conabio.gob.mx/conocimiento/info_especies/árboles/doctos/34-hamam1m.pdf.

Cordero J, Mesén F, Montero M, Stewart J, Dossier D, Chanberlain J, Pennington T, Hands M, Hughes C, Detlefsen G, 2003. Descripciones de especies de árboles nativos de América Central. In: Arboles de Centro América: Un Manual para extensionistas (Cordero J, Boshier DH eds). Oxford, UK. FRP. OFI/CATIE pp: 311-958.

Cuenca G, Cáceres A, Oirdobro G, Hasmy Z, Urdaneta C, 2007. Las micorrizas arbusculares como alternativa para una agricultura sustentable en áreas tropicales. Interciencia 32: 23-29.

Cuenca G, De Andrade Z, Escalante G, 1998. Diversity of glomalean spores from natural, disturbed and re-vegetated communities growing on nutrient-poor tropical soils. Soil Biology and Biochemistry 30: 711-719. https://doi.org/10.1016/S0038-0717(97)00191-0

Cuervo A, Rivas PG, 2007. Cuantificación de hongos micorrízicos en muestras de suelo en plantaciones de Tabebuia rosea y Cordia alliodora. NOVA. Publicación Científica 5: 38-41.

Egerton-Warburton LM, Querejeta JI, Allen MF, 2007. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany 58: 1473-1483. https://doi.org/10.1093/jxb/erm009

Ezawa T, Smith SE, Smith FA, 2002. P metabolism and transport in AM fungi. Plant Soil 244: 221–230. https://doi.org/10.1023/A:1020258325010

FAO-ISRIC- SICS, 1998. World reference Base for Soil Resources. Reports 84. FAO. Rome

Ferrera-Cerrato R, Alarcón A, 2004. Biotecnología de los hongos micorrízicos arbusculares. In: Memoria Simposio de Biofertilización (Diaz FA, Mayek PM, Mendoza A, Maldonado MN eds). Río Bravo. Tamps. México pp 1-9.

Flores C, Cuenca G, 2004. Crecimiento y dependencia micorrízica de la especie pionera y polenectarífera Oyedaea verbesinoides (Tara amarilla), Asteraceae. Interciencia 29: 632-637.

Gavito ME, Pérez D, González C, Vieyra M, Martínez M, 2008. High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza 19: 47-60. https://doi.org/10.1007/s00572-008-0203-4

Gehring CA, Connell JH, 2005. Arbuscular mycorrhizal fungi in tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16(2): 89-98. https://doi.org/10.1007/s00572-005-0018-5

Gerderman JW, Nicolson TH, 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 234-244.

Gual-Díaz M, Rendón-Correa A, 2014. Bosques mesófilos de monta-a de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D. F. 351 pp.

González S, Barrios SRA, 1983. Producción de inóculo de micorrizas arbusculares. Revista Latinoamericana de Microbiología 25: 118-187.

Guzmán-Plazola RA, Ferrera-Cerrato R, 1990. La endomicorriza vesículo-arbuscular en las leguminosas. Centro de Edafología, Colegio de Postgraduados. Montecillo, Estado de Hernández W, Salas E, 2009. La inoculación con Glomus fasciculatum en el crecimiento de cuatro especies forestales en vivero y campo. Agronomía Costarricense 33: 17-30.

INVAM, 2009. International Culture Collection of Vesicular-Arbuscular Mycorrhyzal Fungi. Available in http://invam.caf.wvu.edu/fungi/taxonomy/

Johnson NC, Copeland PJ, Crookston RK, Pfleger FL, 1992. Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agronomy Journal 84: 387-390. https://doi.org/10.2134/agronj1992.00021962008400030007x

Kiers ET, Lovelock CE, Herre EA, 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3: 106-113. https://doi.org/10.1046/j.1461-0248.2000.00126.x

Kormanik, PP. 1985. Development of vesicular arbuscular mycorrhizae in a young sweetgum plantation. Canadian Journal of Forest Research 15: 1061-1064. https://doi.org/10.1139/x85-172

Mariano GM, García H, 2010. Tipos de suelos y su uso potencial en la sub-cuenca del río Huazuntlán, Ver. Undergraduate Thesis. Universidad Veracruzana. Acayucan, Veracruz. 90 pp.

Onguene NA, Kuyper TW, 2005. Growth response of three native timber species to soils with different arbuscular mycorrhizal inoculum potentials in South Cameroon Indigenous inoculum and effect of addition of grass inoculum. Forest Ecology and Management 210: 283-290 https://doi.org/10.1016/j.foreco.2005.02.038

Phillips JM, Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment to infection. Transactions of the British Mycological Society 55: 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Rillig M, 2004. Arbuscular mycorrhizae glomalin and soil aggregation. Canadian Journal of Soil Science 84: 355-363. https://doi.org/10.4141/S04-003

Rodríguez I, Crespo G, Rodríguez C, 2002. Comportamiento de la macrofauna del suelo en pastizales con gramíneas naturales puras o intercaladas con Leucaena leucocephala para la ceba de toros. Revista Cubana de Ciencia Agrícola 36: 181-185.

Saint-Pierre C, Busso CA, Montenegro OA, Rodríguez GD, Giorgetti HD, Montani T, Bravo OA, 2004. Soil resource acquisition mechanisms, nutrient concentrations and growth in perennial grasses. Interciencia 29: 303-310.

SAS Institute (Statistical Analysis System, Institute Inc.) 2002. The SAS system for Windows, ver 9.0 SAS Institute Inc, Cary, North Carolina. USA.

Schenck NC, Perez I, 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, USA.

Schüβler A, Walker C, 2010. The Glomeromycota. A species list with new families and new genera. Available in http://www.lrz.de/~schuessler/amphylo/ NO SE ENCUENTRA ESTA PÁGINA

Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL, 2006. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan Island, China. Mycorrhiza 16: 81-87. https://doi.org/10.1007/s00572-005-0017-6

Shukla A, Kumar A, Jha A, Chaturvedi OP, Prasad R, Gupta A, 2008. Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India. Agroforestry Systems 76: 95-109. https://doi.org/10.1007/s10457-008-9182-x

Sieverding E, 1985. Influence of methods of VA mycorrhizal inoculum placement on the spread of root infection in field-grown Cassiva. Journal of Agronomy and crop Science 154: 161-170.

Sieverding E, 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical Cooperation. Federal Republic of Germany (GTZ) Eschborn, 371 pp

Walkley A, Black A, 1934. An examination of the method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science 37: 29-38. https://doi.org/10.1097/00010694-193401000-00003

Wang B, Qiu YL, 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-316. https://doi.org/10.1007/s00572-005-0033-6

Zangaro W, Bononi VLR, Trufen SB, 2000. Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. Journal of tropical Ecology 16: 603-622 https://doi.org/10.1017/S0266467400001607

Zangaro W, Nisizaki SMA, Domingos JCB, Nakano EM, 2003. Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19: 315–324. https://doi.org/10.1017/S0266467403003341




DOI: 10.5424/fs/2017261-09636

Webpage: www.inia.es/Forestsystems