Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

  • Francisco Rodríguez y Silva University of Córdoba, Dept. of Forest Engineering, Edificio Leonardo da Vinci-Campus de Rabanales, 14071 Córdoba
  • Mercedes Guijarro INIA, Forest Research Centre, Dept. Silviculture and Forest Management, Forest Fire Laboratory, Ctra. de La Coruña km 7.5, 28040 Madrid http://orcid.org/0000-0001-6460-9171
  • Javier Madrigal INIA, Forest Research Centre, Dept. Silviculture and Forest Management, Forest Fire Laboratory, Ctra. de La Coruña km 7.5, 28040 Madrid
  • Enrique Jiménez Xunta de Galicia, Lourizán Forest Research Centre, PO Box 127, 36080 Pontevedra
  • Juan R. Molina University of Córdoba, Dept. of Forest Engineering, Edificio Leonardo da Vinci-Campus de Rabanales, 14071 Córdoba
  • Carmen Hernando INIA, Forest Research Centre, Dept. Silviculture and Forest Management, Forest Fire Laboratory, Ctra. de La Coruña km 7.5, 28040 Madrid
  • Ricardo Vélez Spanish Society of Forest Sciences, PO Box 127, 36080 Pontevedra
  • Jose A. Vega Xunta de Galicia, Lourizán Forest Research Centre, PO Box 127, 36080 Pontevedra
Keywords: wildland fire, fire behaviour, Pinus pinea, small-scale experiment, bench-scale experiment, convection

Abstract

Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation.

Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain.

Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model.

Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena.

Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed. p>


ERRATUM PDF

 

Downloads

Download data is not yet available.

References

Ager AA, Vaillant NM, Owens DE, Brittain S, Hamann J, 2012. Overview and example application of the Landscape Treatment Designer. USDA Forest Service, General Technical Report PNW-GTR-859, Portland, OR, USA, 11 pp.

Alexander ME, Cruz MG, 2016. Crown fire dynamics in conifer forests. In: Synthesis of knowledge of extreme fire behaviour: Volume 2 for fire behaviour specialists, researchers, and meteorologists; Werth PA et al., USDA Forest Service, General Technical Report PNW-GTR-891, Portland, OR, USA, pp: 163-258.

Alexander ME, Cruz MG, Lopes AMG, 2006. CFIS: a software tool for simulating crown fire initiation and spread. Proc 5th Int Conf on Forest Fire Research, Figueira da Foz (Portugal), November 27-30, Amsterdam, The Netherlands: Elsevier B.V. pp. 1-13. https://doi.org/10.1016/j.foreco.2006.08.174

Anderson HE, 1982. Aids to determining fuel models for estimating fire behaviour. USDA Forest Service, Research Papert INT-122, Ogden, UT, USA, 20 pp. https://doi.org/10.2737/INT-GTR-122

Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D, 2007. Evaluation of FARSITE simulator in Mediterranean maquis. Int J Wildland Fire 16: 563-572. https://doi.org/10.1071/WF06070

Arellano S, Vega JA, Ruiz AD, Arellano A, Álvarez JG, Vega DJ, Pérez E, 2016. Foto-guía de combustibles forestales de Galicia, Versión I. Andavira Editora SL, Santiago de Compostela, Spain, 224 pp.

Benali A, Ervilha AR, Sá ACL, Fernandes PM, Pinto RMS, Trigo RM, Pereira JMC, 2016. Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations. Sci Total Environ 569-570: 73-85. https://doi.org/10.1016/j.scitotenv.2016.06.112

Bova AS, Dickinson MB, 2008. Beyond "fire temperatures": calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels. Can J For Res 38 (5): 1008-1020. https://doi.org/10.1139/X07-204

Bradstock RA, Cary GJ, Davies I, Lindenmayer DB, Price OF, Williams RJ, 2012. Wildfires, fuel treatment and risk mitigation in Australian eucalypt forests: insights from landscape-scale simulation. J Environ Manage 105: 66-75. https://doi.org/10.1016/j.jenvman.2012.03.050

Bravo-Oviedo A, Montero G, 2008. Descripción de los caracteres culturales de las principales especies forestales de España. In: Compendio de Selvicultura Aplicada en España; Serrada R, Montero G, Reque JA (eds). INIA-Ministerio de Educación y Ciencia, Madrid. 1178 pp + CD.

Butler BW, 2010. Characterization of convective heating in full-scale wildland fires. Proc 6th Int Conf on Forest Fire Research, Coimbra (Portugal), Nov 15-18, DX Viegas (Ed), 9 pp.

Butler BW, Cohen JD, 1998. Firefighter safety zones: a theoretical model based on radiative heating. Int J Wildland Fire 8: 73-77. https://doi.org/10.1071/WF9980073

Butler BW, Finney MA, Andrews PL, Albini FA, 2004a. A radiation-driven model for crown fire spread. Can J For Res 34 (8): 1588-1599. https://doi.org/10.1139/x04-074

Butler BW, Cohen MJ, Latham RD, Schuette P, Sopko K, Shannon S, Jiménez D, Bradshaw LS, 2004b. Measurements of radiant emissive power and temperatures in crown fires. Can J For Res 34 (8): 1577-1587. https://doi.org/10.1139/x04-060

Byram GM, 1959. Combustion of forest fuels. In: Forest fire: control and use; KP Davis (ed), pp: 61-80. McGraw-Hill, NY.

Clark TL, Radke R, Coen J, Middleton D. 1999. Analysis of small-scale convective dynamics in a crown fire using infrared video camera imagery. J Appl Meteor 38: 1401-1420. https://doi.org/10.1175/1520-0450(1999)038<1401:AOSSCD>2.0.CO;2

Coen J, Mahalingam S, Daily J, 2004. Infrared imagery of crown-fire dynamics during FROSTFIRE. J Appl Meteor 43:1241-1259.https://doi.org/10.1175/1520-0450(2004)043<1241:IIOCDD>2.0.CO;2

Cruz MG, Alexander ME, 2010. Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int J Wildland Fire 19: 377-398. https://doi.org/10.1071/WF08132

Cruz MG, Alexander ME, Wakimoto RH, 2002. Predicting crown fire behavior to support forest fire management decision-making. In: Forest fire research and wildland fire safety [CD-ROM]; Viegas DX (Ed). Millpress Sci Publ, Rotterdam, Netherlands, 11 pp.

Cruz MG, Alexander ME, Wakimoto RH, 2005. Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can J For Res 35: 1626-1639. https://doi.org/10.1139/x05-085

Cruz MG, Butler BW, Alexander ME, 2006. Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation. Int J Wildland Fire 15 (1): 61-72 https://doi.org/10.1071/WF05045

Despain DG, Clark DL, Reardon JJ, 1996. Simulation of crown fire effects on canopy seed bank in Lodgepole Pine. Int J Wildland Fire 6: 45-49. https://doi.org/10.1071/WF9960045

Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F, 2007. Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). Int J Wildland Fire 16: 619-632. https://doi.org/10.1071/WF06101

Fady B, Fineschi S, Vendramin GG, 2004. EUFORGEN Technical Guidelines for genetic conservation and use for Italian stone pine (Pinus pinea). IPGRI, Rome, 6 pp. ISBN 92-9043-663-8.

Fernandes P, Cruz MG, 2012. Plant flammability experiments offer limited insight into vegetation fire dynamics interactions. New Phytol 194 (3): 606-609. https://doi.org/10.1111/j.1469-8137.2012.04065.x

Finney MA, 1998. FARSITE: Fire area simulator-Model development and evaluation. USDA Forest Service, Research Paper RMRS-RP-4, Ogden, UT, USA, 47 pp.

Finney MA, McAllister SS, 2016. Fire interactions and mass fires. In: Synthesis of knowledge of extreme fire behaviour, Vol 2; Werth PA et al. (eds), USDA Forest Service, General Technical Report PNW-GTR-891, Portland, OR, USA, pp: 83-104.

Finney MA, Cohen JD, McAllister SA, Jolly WM, 2013. On the need for a theory of wildland fire spread. Int J Wildland Fire 22: 25-36. https://doi.org/10.1071/WF11117

Finney MA, Cohen JD, Forthofer JM, McAllister SS, Gollner MJ, Gorham DJ, Saito K, Akafuah NK, Adam BA, English JD, 2015. Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci USA 112 (32): 9833-9838. https://doi.org/10.1073/pnas.1504498112

Frankman D, Webb BW, Butler BW, Jimenez D, Forthofer JM, Sopko P, Shannon KS, Hiers JK, Ottmar RD, 2012. Measurements of convective and radiative heating in wildland fires. Int J Wildland Fire 22: 157-167. https://doi.org/10.1071/WF11097

González-Olabarría JR, Rodríguez F, Fernández-Landa A, Mola-Yudego B, 2012. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. For Ecol Manage 282: 149-156.

Jiménez E, Vega-Nieva D, Rey E, Fernández C, Vega JA, 2016. Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait. forest in northern central Spain after thinning and mastication. Eur J Forest Res 135 (4): 675-686. https://doi.org/10.1007/s10342-016-0963-x

Linn R, Winterkamp J, Colman JJ, Edminster C, Bailey JD, 2005. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int J Wildland Fire 14: 37-48. https://doi.org/10.1071/WF04043

Madrigal J, Hernando C, Guijarro M, Diez C, Marino E, de Castro AJ, 2009. Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device. J For Sci 27 (4): 323-342. https://doi.org/10.1177/0734904109102030

Madrigal J, Hernando C, Guijarro M, 2013. A new bench-scale methodology for evaluating the flammability of live forest fuels. J Fire Sci 31 (2): 131-142. https://doi.org/10.1177/0734904112458244

Madrigal J, Fernández-Migueláñez I, Hernando C, Guijarro M, Vega-Nieva DJ, Tolosana E, 2017. Does forest biomass harvesting for energy reduce fire hazard in the Mediterranean Basin? A case study in the Caroig Massif (Eastern Spain). Eur J Forest Res 136: 13-26. https://doi.org/10.1007/s10342-016-1004-5

Mell W, Maranghides A, McDermott, R, Manzello SL, 2009. Numerical simulation and experiments of burning Douglas fir trees. Combust Flame 156: 2023-2041. https://doi.org/10.1016/j.combustflame.2009.06.015

Molina JR, 2015. Validación y ajustes de los modelos de propagación de fuego de copa en la ordenación del paisaje forestal. In: Lecciones aprendidas en los incendios forestales; Rodríguez y Silva F (Ed). SECF-Universidad de Córdoba-MAGRAMA-Junta de Andalucía. Córdoba, Spain, pp: 146-166. ISBN: 978-84-608-3864-7.

Molina JR, Rodríguez y Silva F, Mérida E, Herrera MA, 2013. Evaluando las propagaciones de copa en incendios acontecidos en Andalucía con vistas a su modelización. Una aproximación empírica al inicio y propagación del fuego de copas en masas de pinares. 6º Congreso Forestal Español, SECF, Vitoria-Gasteiz, Jun 10-14. http://www.secforestales.org/

Montero G, Ruiz-Peinado R, Muñoz M, 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Monogr INIA: Ser For Nº 13. INIA, Madrid. 270 pp.

Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati E, Corona P, Vaz P, Xanthopoulos G, et al., 2011. Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92 (10): 2389-2402. https://doi.org/10.1016/j.jenvman.2011.06.028

Nelson RM, Adkins CW, 1988. A dimensionless correlation for the spread of wind-driven fires. Can J For Res 18: 391-397. https://doi.org/10.1139/x88-058

Oliveira TM, Barros AM, Ager AA, Fernandes PM, 2016. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int J Wildland Fire 25: 619-632. https://doi.org/10.1071/WF15146

Pitts WM, Brown E, Peacock RD, Mitler HE, Johnsson EL, Reneke PA, Blevis LG, 2002. Temperatures uncertainties for bare-bead and aspirated thermocouples measurements in fire environments. In: Thermal measurements: The foundation of Fire Standards, ASTM STP 1427, LA Grizo & NJ Alvares, Eds., ASTM International, West Conshohocken, PA, USA.

Rodríguez y Silva F, Molina JR, 2012. Modeling Mediterranean forest fuels by integrating field data and mapping tools. Eur J Forest Res 131: 571-582. https://doi.org/10.1007/s10342-011-0532-2

Rodríguez y Silva F, Molina JR, Martínez JF, 2010. Manual técnico de aplicaciones informáticas para la defensa contra incendios forestales. MANPAI XXI. Córdoba. 117 pp.

Rothermel RC, 1991. Predicting behaviour and size of crown fires in the Northern Rocky Mountains. USDA Forest Service, Research Paper INT-438, Ogden, UT, USA, 46 pp.

Ruiz-Peinado R, del Río M, Montero G, 2011. New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst 20 (1): 176-188. https://doi.org/10.5424/fs/2011201-11643

Shannon KS, Butler BW, 2003. A review of errors associated with thermocouple temperature measurement in fire environments. Proc 2nd Fire Ecol Congr, Orlando, FL, USA, Nov 16-20.

Stocks BJ, Alexander ME, Lanoville RA, 2004a. Overview of the international crown fire modelling experiment (ICFME). Can J For Res 34: 1543-1547. https://doi.org/10.1139/x04-905

Stocks BJ, Alexander ME, Wotton BM, Stefner CN, Flannigan MD, Taylor SW, Lavoie N, Mason JA, Hartley GR, Maffey ME, et al., 2004b. Crown fire behaviour in a northern jack pine – black spruce forest. Can J For Res 34: 1548-1560. https://doi.org/10.1139/x04-054

Sullivan AL, Cruz MG, 2015. Small-scale flame dynamics provide limited insight into wildfire behaviour. Proc Natl Acad Sci USA 112 (31): E4165. https://doi.org/10.1073/pnas.1506877112

Taylor SW, Wotton BM, Alexander ME, Dalrymple GN, 2004. Variation in wind and crown fire behaviour in a northern jack pine – black spruce forest. Can J For Res 34: 1561-1576. https://doi.org/10.1139/x04-116

Thomas PH, 1963. The size of flames from natural fires. Int Symp on Combustion 9, pp: 844-859. Elsevier. https://doi.org/10.1016/S0082-0784(63)80091-0

Van Wagner CE, 1977. Conditions for the start and spread of crown fire. Can J For Res 7: 23-34. https://doi.org/10.1139/x77-004

Werth PA, Potter BE, Alexander ME, Cruz MG, Clements CB, Finney MA, Forthofer JM, Goodrick SL, Hoffman C, Jolly WM, et al., 2016. Synthesis of knowledge of extreme fire behaviour, Vol 2. USDA Forest Service, General Technical Report PNW-GTR-891, Portland, OR, USA, 258 pp.

Published
2017-10-20
How to Cite
Rodríguez y Silva, F., Guijarro, M., Madrigal, J., Jiménez, E., Molina, J. R., Hernando, C., Vélez, R., & Vega, J. A. (2017). Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments. Forest Systems, 26(2), e02S. https://doi.org/10.5424/fs/2017262-10652
Section
SPECIAL SECTION MEDITERRANEAN SILVICULTURE: HOMAGE TO GREGORIO MONTERO