Seed mass variation, germination time and seedling performance in a population of Pinus nigra subsp. salzamannii

  • Pedro Tíscar
  • Manuel Lucas
Keywords: maternal effects, seedling growth, kurtosis, skewness, forest regeneration

Abstract

Seed size and germination time are related to factors affecting natural regeneration of forest stands. Sources of seed mass variation and the effect of seed mass on seedling performance were investigated in a Pinus nigra subsp. salzmannii population. From eight maternal plants, seed mass variation was characterized for two crops at the within-individual level by mean, coefficient of variation, skewness and kurtosis values. Fifty seeds were planted in each of two substrate types, to monitor emergence, and survival and seedling performance during one growing season. Most variation in seed mass occurred within trees (c. 61%), rather than between them (c. 39%). Seed mass influenced emergence, depending on substrate type and mother plant. There were between-tree differences in the date of emergence, and a negative relationship was found between seed mass and date of emergence for the pine-seeds sown in peat substrate. The growth of seedlings was positively related to seed mass. It was argued that successful establishment of seedlings appears to be dependent on mother plant identity associated to seed traits, and that Pinus nigra stands could achieve regeneration by two different alternatives, depending on whether environmental variance overwhelms genetic variation.

Downloads

Download data is not yet available.

References

Aizen M.A., Woodcock H., 1992. Latitudinal trends in acorn size in eastern North American species of Quercus. Canadian Journal of Botany 70, 1218-1222. http://dx.doi.org/10.1139/b92-153

Alonso C., 2005. Pollination success across an elevation and sex ratio gradient in gynodioecious Daphne laureola. American Journal of Botany 92, 1264-1269. http://dx.doi.org/10.3732/ajb.92.8.1264 PMid:21646147

Bañuelos M.J., Obeso J.R., 2003. Maternal provisioning, sibling rivalry and seed mass variability in the dioecious shurb Rhamnus alpinus. Evolutionary Ecology 17, 19-31. http://dx.doi.org/10.1023/A:1022430302689

Bladé C., Vallejo R., 2008. Seed mass effects on performance of Pinus halepensis Mill. seedlings sown after fire. Forest Ecology and Management 255, 2362-2372. http://dx.doi.org/10.1016/j.foreco.2007.12.039

Castellanos M.C., Medrano M., Herrera C.M., 2008. Subindividual variation and genetic versus environmental effects on seed traits in a European Aquilegia. Botany 86, 1125-1132. http://dx.doi.org/10.1139/B08-078

Castro J., 1999. Seed mass versus seedling performance in Scots pine: a maternally dependent trait. New Phytologist 144, 153-161. http://dx.doi.org/10.1046/j.1469-8137.1999.00495.x

Castro J., 2006. Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Annals of Botany 98, 1233-1240. http://dx.doi.org/10.1093/aob/mcl208 PMid:17056614 PMCid:2803580

Castro J., Zamora R., Hócar J.A., Gómez J.M., 2004. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernbmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology 92, 266-277. http://dx.doi.org/10.1111/j.0022-0477.2004.00870.x

Castro J., Hódar J.A., Gómez J.M., 2006. Seed size. In: Handbook of seed science and technology. Ed A Basra, Haworth's Food Products Press, New York. pp. 397-427.

Castro J., Reich P.B., Sánchez-Miranda A., Guerrero J.D., 2008. Evidence that the negative relationship between seed mass and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine. Tree physiology 28, 1077-1082. http://dx.doi.org/10.1093/treephys/28.7.1077 PMid:18450572

Castro J., Zamora R., Hodar J.A., 2002a. Mechanisms blocking Pinus sylvestris colonization of Mediterranean mountain meadows. Journal of Vegetation Science 13, 725-731.

Crean A.J., Marshall D.J., 2009. Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Phil Trans R Soc B 364, 1087-1096. http://dx.doi.org/10.1098/rstb.2008.0237 PMid:19324613 PMCid:2666679

Creus J., 1998. A propósito de los árboles más viejos de la España peninsular: los Pinus nigra Arn. ssp. Salzmanii (Dunal) Franco de Puertollano-Cabañas sierra de Cazorla, Jaén. Montes 54, 68-76.

Debain S., Curt T., Lepart J., 2003. Seed mass, seed dispersal capacity, and seedling performance in a Pinus sylvestris population. Ecoscience 10, 168-175.

García R., Siepielski A.M., Benkman C.W., 2009. Cone and seed trait variation in whitebark pine (Pinus albicaulis; Pinaceae) and the potential for phenotypic selection. American Journal of Botany 96, 1050-1054. http://dx.doi.org/10.3732/ajb.0800298 PMid:21628255

Gómez J.M., 2004. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58, 71-80. PMid:15058720

Halpern S.L., 2005. Sources and consequences of seed size variation in Lupinus perennis (Fabaceae): adaptive and non-adaptive hypotheses. American Journal of Botany 92, 205-213. http://dx.doi.org/10.3732/ajb.92.2.205 PMid:21652397

Herrera C.M., 2009. Multiplicity in unity. Plant subindividual variation and interactions with animals. The University of Chicago Press.

Hódar J.A., Castro J., Zamora R., 2003. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation 110, 123-129. http://dx.doi.org/10.1016/S0006-3207(02)00183-0

IPCC, 2007. Climate change, fourth assessment report. Cambridge University Press, London, UK.

Karkkainen K., Savolainen K., Koski V., 1999. Why do plants abort so many developing seeds. Bad offspring or bad maternal genotypes. Evol Ecol 13, 305-317. http://dx.doi.org/10.1023/A:1006746900736

Leishman M.R., Wright I.J., Moles A.T., Westoby M., 2000. The evolutionary ecology of seed size. In: Seeds. The ecology of regeneration in plant communities (Fenner M., ed). CABI Publishing, Wallingford. pp. 31-57. http://dx.doi.org/10.1079/9780851994321.0031

Lloret F., Casanovas C., Peñuelas J., 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Functional Ecology 13, 210-216. http://dx.doi.org/10.1046/j.1365-2435.1999.00309.x

Mcginley M.A., Smith C.C., Elliott P.F., Higgins J.J., 1990. Morphological constraints on seed mass in lodgepole pine. Functional Ecology 4, 183-192. http://dx.doi.org/10.2307/2389337

Menard S., 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54, 17-24.

Nuismer S.L., Gandon S., 2008. Moving beyond common-garden and transplant designs: insight into the causes of local adaptation in species interactions. The American Naturalist 171, 658-668. http://dx.doi.org/10.1086/587077 PMid:18419564

Oleksyn J., Modrzynski J., Tjoelker M.G., Zytkowiak R., Reich P.B., Karolewski P., 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology 12, 573-590. http://dx.doi.org/10.1046/j.1365-2435.1998.00236.x

Prasad P.V.V., Boote K.J., Allen L.H., Thomas J.M.G., 2002. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biologya 8, 710-721. http://dx.doi.org/10.1046/j.1365-2486.2002.00508.x

Reich P.B., Oleksyn J., Tjoelker M.G., 1994. Seed mass effects on germination and growth of diverse European Scots pine populations. Canadian Journal of Forest Research 24, 306-320. http://dx.doi.org/10.1139/x94-044

Rice K.J., Gordon D.R., Hardison J.L., Welker J.M., 1993. Phenotypic variation in seedlings of a keystone tree species (Quercus douglassii): the interactive effects of acorn source and competitive environment. Oecologia 96, 537-547. http://dx.doi.org/10.1007/BF00320511

Rivas-Martínez S., 1987. Mapa de las Series de Vegetación de España. ICONA, Madrid.

Roach P.A., Wulff R.D., 1987. Maternal effects in plants. Annual Review of Ecology and Systematics 18, 209-235. http://dx.doi.org/10.1146/annurev.es.18.110187.001233

Simons A.M., Johnston M., 2000. Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. American Journal of Botany 87, 124-132. http://dx.doi.org/10.2307/2656690 PMid:10636835

Statsoft, Inc, 1999. STATISTICA for Windows (Computer program manual). Tulsa, OK: StatSoft, Inc, 2300 East 14th Street, Tulsa, OK 74104

Tíscar P.A., 2002. Capacidad reproductiva de Pinus nigra subsp. salzmannii en relación con la edad de la planta madre. Invest Agrar: Sist Recur For 11, 357-371.

Tíscar P.A., 2003. Condicionantes y limitaciones de la regeneración natural en un pinar oromediterráneo de Pinus nigra subsp. salzmannii. Invest Agrar: Sist Recur For 12, 55-64.

Tíscar P.A., 2007. Dinámica de regeneración de Pinus nigra subsp. salzmannii al sur de su área de distribución: etapas, procesos y factores implicados. Invest Agrar: Sist Recur For 16: 124-135.

Tíscar P.A., 2009. La vecería del pino salgareño (Pinus nigra subsp. salzmannii): un análisis a partir de datos recogidos por Enrique Mackay Monteverde. Revista Montes 96, 39-45.

Tripathi R.S., Khan M.L., 1990. Effects of seed wight and microsite chraracteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos 57, 289-296. http://dx.doi.org/10.2307/3565956

Westoby M., Leishman M., Lord J., 1997. Comparative ecology of seed size and dispersal. Plant life histories, ecology, phylogeny and evolution (Silvertown J., Franco M., Harper J.L., eds). Cambridge University Press, Cambridge, UK. pp. 143-162.

Zar J.H., 1984. Biostatistical analysis. Prentice-Hall, Inc, New Jersey. 718 pp. PMid:6436396

Published
2010-10-04
How to Cite
Tíscar, P., & Lucas, M. (2010). Seed mass variation, germination time and seedling performance in a population of Pinus nigra subsp. salzamannii. Forest Systems, 19(3), 344-353. https://doi.org/10.5424/fs/2010193-9094
Section
Research Articles