Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

  • L. Jr. Rodrigues Nogueira Brazilian Agricultural Research Corporation. Embrapa Coastal Tablelands. 3250 Av. Beira Ma
  • J.L. de Moraes Gonçalves University of São Paulo. USP. ESALQ. 11 Av. Pádua Dias. 13418-900 Piracicaba (São Paulo).
  • V. Lex Engel São Paulo State University. UNESP. 1780 Rua Dr. José Barbosa de Barros. 18607-030 Botucatu
  • J. Parrotta US Forest Service. 1601 N. Kent Street. Arlington, VA. 2209 USA
Keywords: restoration models, recovery of degraded land, legume trees, physical properties, chemical properties, microbial biomass.

Abstract

Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical- texture, density and porosity; (2) chemical- C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.

Downloads

Download data is not yet available.

References

Brockerhoff E., Jactel H., Parrotta J.A., Quine C., Sayer J., 2008. Biodiversity and planted forests - Oxymoron or Opportunity? Biodiversity and Conservation 17(5), 925-951. http://dx.doi.org/10.1007/s10531-008-9380-x

Carnus J.-M., Parrotta J., Brockerhoff E.G., Arbez M., Jactel H., Kremer A., Lamb D., O'Hara K., Walters B., 2006. Planted forests and biodiversity. Journal of Forestry 104(2), 65-77.

Cerri C.C., Feller C., Chauvel A., 1991. Liberação das principais propriedades de um latossolo vermelho escuro após desmatamento e cultivo por doze e cinquenta anos com cana-de-açucar. Cah ORSTOM, sér Pédol 26, 37-50.

Ducatti F., 2002. Fauna edáfica em fragmentos florestais e em áreas reflorestadas com espécies da Mata Atlântica. Dissertação de Mestrado. Universidade de São Paulo, Piracicaba. [In Portuguese]. PMid:12493229

EMBRAPA, 1997. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos, 2ed. Rio de Janeiro, Brazil. 212 pp.

Engel V.L., Parrotta J.A., 2001. An evaluation of direct seeding for reforestation of degraded lands in central São Paulo State, Brazil. For Ecol Manage 152, 169-181.

Engel V.L., Parrotta J.A., 2008. Definindo a restauração ecológica: tendências e perspectivas mundiais. In: Restauração ecológica de ecossistemas naturais (Kageyama P.Y., Oliveira R.E. de, Moraes L.F.D. de, Engel V.L., Gandara F.B., orgs). FEPAF, Botucatu, Brazil. pp. 1-26.

Ewel J.J., 1987. Restoration is the ultimate test for ecological theory. In: Restoration ecology (Jordan III W., Gilpin M.E., Aber J.D., eds). Cambridge, Cambridge University Press. pp. 31-33.

Galatowitsch S.M., 2009 Carbon offsets as ecological restoration. Restoration Ecology 17, 563-570. http://dx.doi.org/10.1111/j.1526-100X.2009.00587.x

Gama-Rodrigues E.F., 1999. Biomassa microbiana e ciclagem de nutrientes. In: Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais (Santos G.A., Camargo F.A.O., eds). Genesis, Porto Alegre, Brazil. pp. 227-244.

Gonçalves J.L. De M., Nogueira Jr. L.R., Ducatti F., 2008. Recuperação de solos degradados. In: Restauração ecológica de ecossistemas naturais (Kageyama P.Y., Oliveira R.E. de, Moraes L.F.D. de, Engel V.L., Gandara F.B., orgs). FEPAF, Botucatu, Brazil. pp. 111-164.

Gregorich E.G., Greer K.J., Anderson D.W., Liang B.C., 1998. Carbon distribution and losses: erosion and deposition effects. Soil and Tillage Research 47, 291-302. http://dx.doi.org/10.1016/S0167-1987(98)00117-2

Harris J., 2009. Soil microbial communities and restoration ecology: facilitators or followers? Science 325, 573-574. http://dx.doi.org/10.1126/science.1172975 PMid:19644111

Harris J.A., Hobbs R.J., Higgs E., Aronson J., 2006. Ecological restoration and global climate change. Restoration Ecology 14, 170-176. http://dx.doi.org/10.1111/j.1526-100X.2006.00136.x

Lal R., 2005. Forest soils and carbon sequestration. For Ecol Manage 220, 242-258.

Lamb D., Erskine P.D., Parrotta J.A., 2005. Restoration of degraded tropical forest landscapes. Science 310, 1628-1632. http://dx.doi.org/10.1126/science.1111773 PMid:16339437

Macedo M.O., Resende A.S., García P.C., Boddey R.M., Jantalia C.P., Urquiaga S., Campello E.F.C., Franco A.A., 2008. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For Ecol Manage 255, 1516-1524.

Mahía J., Pérez-Ventura A., Cabaneiro A., Díaz-Raniña M., 2006. Soil microbial biomass under pine forests in the north-western Spain: influence of stand age, site index and parent material. Invest Agrar: Sist Recur For 15, 152-159.

Mcnamara S., Tinh D.V., Erskine P.D., Lamb D., Yates D., Brown S., 2006. Rehabilitating degraded forest land in central Vietnam with mixed native species plantings. For Ecol Manage 233, 358-365.

Oliveira J.B. DE, 1999. Solos do Estado de São Paulo: descrição das classes registradas no mapa pedológico. Instituto Agronômico, Campinas, Brazil. 112 pp. (IAC. Boletim Científico, 45).

Parrotta J.A., 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems and Environment 41(2), 115-133. http://dx.doi.org/10.1016/0167-8809(92)90105-K

Parrotta J.A., 1999. Productivity, nutrient cycling and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Ecol Manage 124(1), 45-77.

Parrotta J.A., Turnbull J., Jones N., 1997. Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manage 99, 1-8.

Paul M., Catterall C.P., Pollard P.C., Kanowski J., 2010. Recovery of soil properties and functions in different rainforest restoration pathways. For Ecol Manage 259, 2083-2092.

Pulito A.P., 2009. Resposta à fertilização nitrogenada e estoque de nitrogênio biodisponível em solos usados para plantações de Eucalyptus. Dissertação de mestrado. Universidade de São Paulo, Piracicaba. [In Portuguese].

Raij B. Van, Andrade J.C., Cantarella H., Quaggio J.A., 2001. Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas, Brazil. 285 pp.

Ribeiro M.C., Metzger J.P., Martensen A.C., Ponzoni F.J., Hirota M.M., 2009. The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142, 1141-1153. http://dx.doi.org/10.1016/j.biocon.2009.02.021

SAS INSTITUTE, 2009. SAS® 9.2: qualification tools user's guide

Siddique I., Engel V.L., Parrotta J.A., Lamb D., Nardoto G.B., Ometto J.P.H.B., Martinelli L.A., Schmidt S., 2008. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry 88, 89-101. http://dx.doi.org/10.1007/s10533-008-9196-5

Sos Mata Atlântica, Instituto Nacional de Pesquisas Espaciais (INPE), 2009. Atlas dos remanescentes florestais da Mata Atlântica período de 2005 a 2008: relatório parcial. São Paulo. 156 pp.

Vance E.D., Brookes P.C., Jenkinson D.S., 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19, 703-707. http://dx.doi.org/10.1016/0038-0717(87)90052-6

Young T.P., 2000. Restoration ecology and conservation biology. Biological Conservation 92, 73-83. http://dx.doi.org/10.1016/S0006-3207(99)00057-9

Published
2011-12-04
How to Cite
Rodrigues Nogueira, L. J., de Moraes Gonçalves, J., Lex Engel, V., & Parrotta, J. (2011). Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species. Forest Systems, 20(3), 536-545. https://doi.org/10.5424/fs/20112003-11844
Section
Research Articles