Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

  • Marina Castro Mountain Research Centre (CIMO), IPB, Bragança, Portugal. 5300-854. Bragança.
  • Esther Fernandez-Nuñez Mountain Research Centre (CIMO), IPB, Bragança, Portugal. 5300-854. Bragança.

Abstract

Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.

Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd) in NE Portugal.

Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N), soil organic carbon (SOC), C/N ratio, available phosphorus (P), and available potassium (K)) and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.

Main results: The results showed a different pattern of soil fertility (N, SOC, P, K) in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern.

Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions); Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions); and Q. suber were found in intermediate zones.

Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

Downloads

Download data is not yet available.

References

Aber JA, Melillo JM, 2001. Terrestrial Ecosystems. 2nd edition. Saunders College Publishers, New York, USA.

Aerts R, Chapin FS, 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1-67. http://dx.doi.org/10.1016/S0065-2504(08)60016-1

Alarcón-Gutiérrez E, Floch C, Augur C, Le Petit J, Ziarelli F, Criquet S, 2009. Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile. Pedobiologia 52: 387-399. http://dx.doi.org/10.1016/j.pedobi.2009.01.002

Andivia E, Fernández M, Vazquez-Piqué J, González-Pérez A, Tapias R, 2010. Nutrients return from leaves and litterfall in a mediterranean cork oak (Quercus suber L.) forest in southwestern Spain. Eur J Forest Res 129: 5-12. http://dx.doi.org/10.1007/s10342-009-0274-6

Aponte C, Marañón T, García LV, 2010. Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry 101:77–92. http://dx.doi.org/10.1007/s10533-010-9418-5

Aponte C, García LV, Marañón T, 2012. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems 15: 1204-1218. http://dx.doi.org/10.1007/s10021-012-9577-4

Batjes NH, 1996. Total carbon and nitrogen in soils of the world. European J Soil Sci 47: 151-163. http://dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x

Binkley D, 1995. The influence of tree species on forest soils: processes and patters. In: Mead DJ, Cornforth IS (eds). Proceedings of the Trees and Soil Workshop 1994. Lincoln University Press, Canterbury, NZ. pp. 1-33.

Blanco E, González MAC, Tenorio MC, Bombín RE, Antón MG, Fuster MG, Manzaneque AG, Manzaneque FG, Saiz JCM, Juaristi CM, Pajares PR, Ollero HS, 1997. Los bosques ibéricos. Una interpretación geobotánica. Planeta, Barcelona (Spain).

Bortoluzzi EC, Rheinheimer DS, Gatiboni LC, Kaminski J, Tessier D, 2005. Alterações na mineralogia de um Argissolo do Rio Grande do Sul afetado pela fertilização potássica. Rev Bras Cienc 29: 327–335.

Bremner, 1996. Nitrogen Total. In Methods of soil analysis. Part 3. Chemical Methods-SSSA. Book n5.

Canadell J and Vilá M, 1992. Variation in tissue element concentrations in Q. ilex L. Cools over a renage of different soils. Vegetation 99-100: 273-282. http://dx.doi.org/10.1007/BF00118234

Carrera AL, Mazzarino MJ, Bertiller MB, Del Valle HF, Carretero EM, 2009. Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J Arid Environ 73: 192-201. http://dx.doi.org/10.1016/j.jaridenv.2008.09.016

Castro M, 2008. Silvopastoral systems in Portugal: current status and future prospects. In Rigueiro-Rodríguez, Antonio; McAdam, Jim; Mosquera-Losada, María Rosa (Eds.) Agroforestry in Europe: Current Status and Future Prospects. Springer. pp. 111-126. http://dx.doi.org/10.1007/978-1-4020-8272-6_6

Cools N, Vesterdal L, De Vos B, Hansen K, 2014. Tree species is the major factor explaining C:N ratios in European forest soils. Forest Ecol Manag 311: 3-16. http://dx.doi.org/10.1016/j.foreco.2013.06.047

Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B, 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143: 191-200. http://dx.doi.org/10.1046/j.1469-8137.1999.00430.x

EEA, 2011. The European environment – state and Outlook 2010: assessment of global megatrends. European Environment Agency, Copenhagen, Denmark.

Egner H, Riehm H and Domingo WR, 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden 606 Journal of Food, Agriculture & Environment, Vol.9 (2), April 2011 zur Phosphor- und Kaliumbestimmung. Annals Royal Agricultural College, Sweden. 26: 199-215.

Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartman A, Kastner M, Marhan S, Miltner A, Scheu S, Wolters V, 2008. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171: 27-35. http://dx.doi.org/10.1002/jpln.200700051

Gallardo A, Rodríguez-Saucedo J.J, Covelo F, Fernández-Alés R, 2000. Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222: 71–82. http://dx.doi.org/10.1023/A:1004725927358

Gallardo A, 2003. Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47: 117-125. http://dx.doi.org/10.1078/0031-4056-00175

Gallego HA, Santa Regina I, Rico M, Rapp M, 1993. Variación estacional de la concentración de nutrientes en hojas y ramas en bosques naturales de Quercus pyrenaica (Sierra de Gata). Proc.11th Int. Symp. Environmental Biogeochemistry Vol. 1, 111-120.

Homann PS, Kapchinske JS, Boyce A, 2007. Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochem 85: 303-316. http://dx.doi.org/10.1007/s10533-007-9139-6

Hooper DU, Vitousek PM, 1998. Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68: 121-149. http://dx.doi.org/10.1890/0012-9615(1998)068[0121:EOPCAD]2.0.CO;2

INMG, 1991. O clima de Portugal. Normas climatológicas da região de "Trás-os-Montes e Alto Douro" e "Beira Interior", correspondentes a 1951–1980. INMG, Lisboa, Portugal.

IFN, 2005. Relatório Final do 5.º Inventário Florestal Nacional. Direcção Nacional de Gestão Florestal. Ministerio de Agricultura, do Desenvolvemento Rural e das Pescas. Portugal.

Jobbágy EG, Jackson RB, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10: 423-436. http://dx.doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

Jobbágy EG, Jackson RB, 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53: 51–77. http://dx.doi.org/10.1023/A:1010760720215

Kristensen HL, Gundersen P, Callesen I, Reinds GJ, 2004. Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems 7(2): 180–192. http://dx.doi.org/10.1007/s10021-003-0216-y

Ley RE, Williams MW, Schmidt SK, 2004. Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68: 313-335. http://dx.doi.org/10.1023/B:BIOG.0000031032.58611.d0

Lucas Y, 2001. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29: 135–63. http://dx.doi.org/10.1146/annurev.earth.29.1.135

Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ, 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115: 189-198. http://dx.doi.org/10.1007/BF02202587

Moreno G, Obrador JJ, García A, 2007. Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119: 270-280. http://dx.doi.org/10.1016/j.agee.2006.07.013

Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J, 2009. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Appl Soil Ecol 42, 279-287. http://dx.doi.org/10.1016/j.apsoil.2009.05.006

Otieno DO, Mirzaei H, Hussain MZ, Li YL, Schmidt MWT, Wartinger M, Jung E, Ribeiro N, Pereira JS, Tenhunen J, 2011. Herbaceous layer development during spring does not deplete soil nitrogen in the Portuguese montado. J Arid Environ 75(3): 231-238. http://dx.doi.org/10.1016/j.jaridenv.2010.10.011

Pausas JG, Ribeiro E, Dias SG, Pons J, Beseler C, 2006. Regeneration of a marginal Quercus suber forest in the eastern Iberian Peninsula. J Veg Sci 17: 729-738.

Plieninger T, Pulido FJ, Konold W, 2003. Effects of land-use history on size structure of Holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30(1): 61–70. http://dx.doi.org/10.1017/S0376892903000055

Rapp M, Santa-Regina I, Rico M, Gallego H, 1999. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forest. For Ecol Manage 119: 39-49.

Rico M, Gallego HA, Moreno G, Santa Regina I, 1996. Stomatal response of Quercus pyrenaica to environmental factors in 2 sites differing in their annual rainfall (Sª de Gata, Spain). Ann For Sci 53: 221–234. http://dx.doi.org/10.1051/forest:19960205

Ruiz de la Torre J, 2002. Mapa forestal de España. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente. Madrid, Spain.

Salazar S, Sánchez LE, Alvarez J, Valverde A, Galindo P, Igual JM, Peix A, Santa-Regina I, 2011. Correlation among soil enzyme activities under different forest system management practices. Ecol Eng 37: 1123-1131. http://dx.doi.org/10.1016/j.ecoleng.2011.02.007

Santos JQ, 1965. Aspectos de correcção de acidez do solo. An. Inst. Sup. Agron. 27: 11-67.

Sardans J, Rodá F, Peñuelas J, 2004. Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecol 174: 305-317. http://dx.doi.org/10.1023/B:VEGE.0000049110.88127.a0

SAS, 2001. SAS/Stat User’s Guide: Statistics Ed. SAS Institute Inc. Cary NC, USA.

Satti P, Mazzarino MJ, Gobbi M, Fundes F, Roselli L, Fernández H, 2003. Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. J Ecol 91: 173-181. http://dx.doi.org/10.1046/j.1365-2745.2003.00756.x

Schulte EE, 1980. Recommended soil organic matter tests. Bull. 499 (revised). In: Recommended chemical soil tests procedures for the North Central Region (Dhanke W.C., N. Dakota SU, eds). Fargo. pp. 28-30.

Silla F, Escudero A, 2006. Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil 282: 301-311. http://dx.doi.org/10.1007/s11104-006-6249-1

Tarrega R, Calvo L, Marcos E, Taboada A, 2006. Forest structure and understory diversity in Quercus pyrenaica communities with different human uses and disturbances. Forest Ecol Manag 227: 50–58. http://dx.doi.org/10.1016/j.foreco.2006.02.008

Teixeira A, Castro M, Castro JF, 2001. PAMAF 7102 Utilização silvopastoril das florestas autóctones de Trás-os-Montes: seu estudo integrado. Relatório final. ESAB, Bragança. Portugal.

Ter Braak CJF, Smilauer P, 2002. CANOCO Reference manual and Canodraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power, USA.

Turrión MB, Schneider K, Gallardo JF, 2009. Carbon accumulation in Umbrisols under Quercus pyrenaica forest: effects of bedrock and annual precipitation. Catena 79: 1-8. http://dx.doi.org/10.1016/j.catena.2009.04.004

Turrión MB, Schneider K, Gallardo JF, 2008. Soil P availability along a catena located at the Sierra de Gata Mountains, Western Central Spain. For Eco Manage 255: 3254-3262.

Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, 1964. Webb da Flora Europaea, vol. 1. Cambridge University Press, Cambridge, UK.

Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P, 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Eco Manage 255: 35-48.

Ulrich B, Summer ME, 1991. Soil Acidity. Springer Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-642-74442-6

Vinton MA, Burke IC, 1995. Interactions between individual plant-species and soil nutrient status in shortgrass steppe. Ecology 76: 1116-1133. http://dx.doi.org/10.2307/1940920

Whitehead D, 1995. Grassland nitrogen. Wallingford, CAB International, UK.

Zas R, Alonso M, 2002. Understory vegetation as indicators of soil characteristics in northwest Spain. For Eco Manage 171: 101-111.

Zinn YL, Lal R, Bigham JM, Resck DVS, 2007. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Sci Soc Am J 71: 1204-1214. http://dx.doi.org/10.2136/sssaj2006.0014

Published
2014-12-01
How to Cite
Castro, M., & Fernandez-Nuñez, E. (2014). Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal. Forest Systems, 23(3), 425-437. https://doi.org/10.5424/fs/2014233-05086
Section
Research Articles