Embryogenesis in Oak species. A review

  • Aranzazu Gomez-Garay Departamento de Biología Vegetal I: Fisiología Vegetal. Facultad de Biología. UCM. Madrid.
  • Jose A. Manzanera E.T.S.I. Montes, Universidad Politécnica de Madrid, 28040 Madrid.
  • Beatriz Pintos-Lopez Departamento de Biología Vegetal I: Fisiología Vegetal. Facultad de Biología. UCM. Madrid.

Abstract

Aim of study: A review on the propagation methods of four Quercus species, namely Q. suber, Q. robur, Q. ilex and Q. canariensis, through somatic embryogenesis and anther embryogenesis are presented.

Area of study: The study comprises both Mediterranean and Atlantic oak species located in Spain.

Material and Methods: Somatic embryogenesis was induced on immature zygotic embryos of diverse oak species, permitting the multiplication of half-sib families. Induction of haploid embryos and doubled haploids was assayed in both Q. suber and Q. ilex by temperature stress treatments of anthers containing late vacuolated microspores. The haploid origin of the anther embryos has been evaluated by quantitative nuclear DNA analysis through flow cytometry and by DNA microsatellite markers. Genetic transformation of cork oak has also been performed by means of Agrobacterium tumefaciens vectors. Proteomic analysis has been conducted to screen the diverse protein profiles followed by in vitro derived embryos during their development.

Research highlights: Successful plant regeneration from both somatic and haploid embryos has been achieved. In the particular case of cork oak, doubled-haploid plants were obtained. Plantlets regenerated from selected parent trees through somatic embryogenesis were acclimated in the greenhouse and in the nursery, and were planted in an experimental plot in the field. Preliminary evaluation of the cork quality of the plants showed a good heritability correlation with the parent trees. This article revises the work of and is dedicated to Dr. M.A. Bueno, who devoted much of her professional life to the research on Biotechnology and Genetics of forest species, leading the Laboratory of Forest Biotechnology at the Spanish Institute of Agronomic Research (INIA).

Key words: anther embryogenesis; microspore; pollen; Quercus canariensis; Quercus ilex; Quercus robur; Quercus suber; somatic embryogenesis. 

Downloads

Download data is not yet available.

References

Bueno MA, Astorga R, Manzanera JA, 1992. Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85, 30-34. http://dx.doi.org/10.1111/j.1399-3054.1992.tb05259.x

Bueno MA, Manzanera JA, 1992. Primeros ensayos de inducción de embrioides somáticos de Quercus suber L. Scientia Gerundensis 18, 29-37.

Bueno MA, Gómez A, Vicente O, Manzanera JA, 1996. Stability in ploidy level during somatic embryogenesis in Quercus canariensis. In: M.R. Ahuja, W. Boerjan& D.B. Neale (eds.): Somatic Cell Genetics and Molecular Genetics of Trees. Kluwer Academic Publishers, pp. 23-28.

Bueno MA, Gómez, A, Boscaiu M, Manzanera JA & Vicente, O, 1997. Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiol Plant 99, 335-341. http://dx.doi.org/10.1111/j.1399-3054.1997.tb05421.x

Bueno MA, Agundez MD, Gómez A, Carrascosa MJ, Manzanera JA, 2000a. Haploid origin of cork oak anther embryos detected by enzyme and RAPD gene markers. Int J Plant Sci 161, 363-367. http://dx.doi.org/10.1086/314265

Bueno MA, Gómez A, Manzanera JA, 2000b. Somatic and gametic embryogenesis in Quercus suber L. In: Jain SM, Gupta PK, Newton RJ (eds.) Somatic Embryogenesis in Woody Plants. Vol. 6 Kluwer Academic Publishers, pp. 479-508. http://dx.doi.org/10.1007/978-94-017-3030-3_16

Bueno, M.A., Gomez, A., Sepulveda F., Segui, J.M., Testillano, P.S. Manzanera, J.A., Risueño, M.C, 2003. Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long term anther culture. Journal of Plant Physiology 160: 953-960. http://dx.doi.org/10.1078/0176-1617-00800

Chalupa V, 1990. Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Reports 9: 398-401. http://dx.doi.org/10.1007/BF00232408

Gómez A, Pintos B, Aguiriano E, Manzanera JA, Bueno MA, 2001. SSR markers for Quercus suber tree identification and embryo analysis. Journal of Heredity 92(3), 292-295. http://dx.doi.org/10.1093/jhered/92.3.292

Gomez A, López JA, Pintos B, Camafeita E, Bueno MA, 2009. Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9: 4355–4367. http://dx.doi.org/10.1002/pmic.200900179

Gomez A, López JA, Bueno MA, Camafeita E, Pintos B, 2013. Proteomic perspective of Quercus suber somatic embryogenesis, J Prot.

Hubner E, Muller K, Heyder J, Schmitt HP, 1995. Somatic embryogenesis and shoot development as function of 2,4-D and BAP-concentrations in zygotic embryos of late flushing pedunculate oak (Quercus robur L). Silvae Genetica 44(5-6): 225-229.

Lloyd G, McCownBH, 1981.Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia by use of shoot tip culture. Int Plant Prop Soc Proc 30: 421-427.

Manzanera JA, Astorga R, Bueno MA, 1993. Somatic embryo induction and germination in Quercus suber L. Silvae Genetica 42 (2-3): 90-93.

Manzanera, J.A., Bueno, M.A., Pardos, J.A, 1996. Quercus robur. In: Bajaj, Y.P.S., (ed.): Biotechnology in Agriculture and Forestry. Vol 35. Trees IV. Springer. pp. 321-341.

Murashige T, Skoog F, 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

Pintos B, Manzanera JA, Bueno MA, 2005. Cytological analysis of early microspore divisions leading to gametic embryo formation in Quercus suber L. anther cultures. Acta Physiologiae Plantarum 27: 703-708. http://dx.doi.org/10.1007/s11738-005-0074-7

Pintos B, Manzanera JA, Bueno MA, 2007. Antimitotic agents increase the production of doubled-haploid embryos from cork-oak anther culture. Journal of Plant Physiology 164 (12): 1595-1604. http://dx.doi.org/10.1016/j.jplph.2006.11.012

Pintos B, Bueno MA, Cuenca B, Manzanera JA, 2008. Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell, Tissue and Organ Culture 95(2): 217-225. http://dx.doi.org/10.1007/s11240-008-9435-4

Pintos, B., Manzanera, J.A., Bueno, M.A., Cremades, A. and González-Adrados, J.R, 2009. Acclimation and establishment of cork oak (Quercus suber) somatic embryo-derived plantlets and post-acclimation cork quality test. Acta Hort. (ISHS) 812: 431-436.

Pintos B, Manzanera JA, Bueno MA, 2010. Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture. Annals of Forest Science 67: 205. http://dx.doi.org/10.1051/forest/2009098

Pintos B, Sánchez N, Bueno MA, Navarro RM, Jorrín J, Manzanera JA, Gómez-Garay A, 2013. Induction of Quercus ilex L. haploid and doubled-haploid embryos from anther cultures by temperature-stress. Silvae Genetica 62: 210-218.

Sánchez N, Manzanera JA, Pintos B, Bueno MA, 2005. Agrobacterium-mediated transformation of cork oak (Quercus suberL.) somatic embryos. New Forests 29: 169-176. http://dx.doi.org/10.1007/s11056-005-0208-1

Sommer HE, Brown CL, Kormanik PP, 1975. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136: 196-200. http://dx.doi.org/10.1086/336802

Published
2014-08-01
How to Cite
Gomez-Garay, A., Manzanera, J. A., & Pintos-Lopez, B. (2014). Embryogenesis in Oak species. A review. Forest Systems, 23(2), 191-198. https://doi.org/10.5424/fs/2014232-05829
Section
Reviews