Seed production and recruitment in primary and harvested Nothofagus pumilio forests: Influence of regional climate and years after cuttings

  • Ana D. Torres Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA) - Universidad Nacional de La Plata (UNLP). La Plata, Buenos Aires.
  • Juan M. Cellini Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA) - Universidad Nacional de La Plata (UNLP). La Plata, Buenos Aires.
  • María V. Lencinas Centro Austral de Investigaciones Científicas (CADIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ushuaia, Tierra del Fuego.
  • Marcelo D. Barrera Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA) - Universidad Nacional de La Plata (UNLP). La Plata, Buenos Aires.
  • Rosina Soler Centro Austral de Investigaciones Científicas (CADIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ushuaia, Tierra del Fuego.
  • Ricardo Diaz-Delgado Laboratorio de SIG y Teledetección, Estación Biológica de Doñana (CSIC). Sevilla.
  • Guillermo J. Martínez Pastur Centro Austral de Investigaciones Científicas (CADIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ushuaia, Tierra del Fuego.

Abstract

Aim of study: Harvesting proposals (e.g. variable retention) for Nothofagus pumilio forests are based on canopy opening, to increase recruitment and enhance seedling growth, by modifying light and soil moisture. Seed production and seedling recruitment will define the success of harvesting, where remnant forest structure are the main influence factors, as well as biotic and abiotic factors. The objective was to analyse seed production, seedling recruitment and recruitment efficiency in primary and harvested forests through variable retention along the first 10 years after harvesting, as well as the influence of regional climate.

Area of study: The study were conducted in a pure Nothofagus pumilio forest located in centralTierra del Fuego (54º18’ S, 67º49’ W), where harvested stands with variable retention and unmanaged forests were sampled in long-term permanent plots.

Material and methods: Data of forest regeneration plots were used (n=72) (2007 a 2014), and forest structure and seed production (2006 a 2013) were also measured. Regional climate was characterised for these years from satellite images (Sea Surface Temperature) and climate re-analysis models (rainfall and temperature of land surface).

Main results: Harvesting modified forest structure; however, aggregated retention maintained some characteristics of the primary unmanaged forests. These changes influenced seed production and recruitment. Seed production and recruitment were related to crown cover and the amount of seed production; however, recruitment efficiency was not affected by harvesting. The studied variables significantly changed along the years after harvesting. Seed production and recruitment were also related to regional climate factors, where it was possible to explain their variations through temperature (e.g. summer temperature) and rainfall (e.g. winter rainfall) for the different retention types in harvested forests and the primary forests.

Research highlights: Variable retention harvesting generated different micro-conditions that influence seed production and recruitment. These variables were related to canopy cover. However, recruitment efficiency was not affected by harvesting. Seed production and recruitment (primary forests and harvested stands) were related to regional climate factors and their variations can be explained from variables related to temperature and rainfall.

Key words: regeneration; forest management; crown cover; regional climate; modelling; Tierra del Fuego.

Downloads

Download data is not yet available.

Author Biography

Guillermo J. Martínez Pastur, Centro Austral de Investigaciones Científicas (CADIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ushuaia, Tierra del Fuego.

Investigador Independiente

CONICET

References

References

Bahamonde H, Peri PL, Monelos L, Martínez Pastur G, 2011. Aspectos ecológicos de la regeneración por semillas en bosques nativos de Nothofagus antarctica en Patagonia Sur, Argentina. Bosque 32(1): 20-29. http://dx.doi.org/10.4067/S0717-92002011000100003

Bales RC, Hopmans JW, O'Geen A, Meadows M, Hartsough P, Kirchner P, Hunsaker C, Beaudette D, 2011. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J 10: 786-799. http://dx.doi.org/10.2136/vzj2011.0001

Blood LE, Titus JH, 2010. Microsite effects on forest regeneration in a bottomland swamp in western New York. J Torrey Bot Soc 137: 88-102. http://dx.doi.org/10.3159/08-RA-062.1

Caldentey J, Ibarra M, Promis A, 2005. Microclimatic variations in a Nothofagus pumilio forest caused by shelterwood systems: Results of seven years of observations. Int For Rev 7(5): 46.

Caldentey J, Mayer H, Ibarra M, Promis A, 2009. The effects of a regeneration felling on photosynthetic photon flux density and regeneration growth in a Nothofagus pumilio forest. Eur J Forest Res 128: 75-84. http://dx.doi.org/10.1007/s10342-008-0240-8

Cellini JM, 2010. Estructura y regeneración bajo distintas propuestas de manejo de bosques de Nothofagus pumilio (Poepp et. Endl) Krasser en Tierra del Fuego, Argentina. Doctoral Thesis. Universidad Nacional de La Plata. 157 pp.

Chen J, Franklin JF, Spies TA, 1993. Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63: 219-237. http://dx.doi.org/10.1016/0168-1923(93)90061-L

Chen J, Franklin JF, Spies TA, 1995. Growing-season microclimate gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5: 74-86. http://dx.doi.org/10.2307/1942053

Collado L, Farina S, Jaras F, Vargas H, 2008. Monitoreo del estado de intervención y de la regeneración de Nothofagus pumilio en un plan de manejo forestal en el ecotono estepa-bosque de Tierra del Fuego, Argentina. Bosque 29(1): 85-90. http://dx.doi.org/10.4067/S0717-92002008000100010

Cuevas J, Arroyo MK, 1999. Ausencia de banco de semillas persistente en Nothofagus pumilio (Fagaceae) en Tierra del Fuego, Chile. Rev Chil Hist Nat 72: 73-82.

Cuevas J, 2000. Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Ecology 88: 840-855. http://dx.doi.org/10.1046/j.1365-2745.2000.00497.x

Cuevas J, 2002. Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Ecology 90: 52-60. http://dx.doi.org/10.1046/j.0022-0477.2001.00636.x

Curran, LM, Caniago I, Paoli GD, Astianti D, Kusneti M, Leighton M, Nirarita CE, Haerurnan H, 1999. Impact of El Niño and logging on canopy tree recruitment. Science 286: 2184-2188. http://dx.doi.org/10.1126/science.286.5447.2184

Frazer GW, Fournier RA, Trofymow JA, Gall RJ, 2001. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol 109: 249-263. http://dx.doi.org/10.1016/S0168-1923(01)00274-X

Gallo E, Lencinas MV, Martínez Pastur G, 2013. Site quality influence over understory plant diversity in old-growth and harvested stands of Nothofagus pumilio forest. For Syst 22(1): 25-38.

González M, Donoso Zegers C, Ovalle P, Martínez Pastur G, 2006. Nothofagus pumilio (Poepp. et Endl) Krasser - lenga, roble blanco, leñar, roble de Tierra del Fuego - Familia: Fagaceae. In: Las Especies arbóreas de los Bosques Templados de Chile y Argentina: Autoecología (Donoso Zegers C, Ed.). Marisa Cúneo Ed., Valdivia, Chile. pp. 486-500.

Gutiérrez E, 1994. Els boscos de Nothofagus de la Terra del Foc com a paradigma de dinámica successional del no-equilibri. Treballs de la SCB 45: 93-121.

Heinemann K, Kitzberger Th, Veblen Th, 2000. Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30(1): 25-31.

Heinemann K, Kitzberger Th, 2006. Effects of position, understory and coarse woody debris on tree regeneration in two environmentally contrasting forests of northwestern Patagonia: A manipulative approach. J Biogeog 33: 1357-1367. http://dx.doi.org/10.1111/j.1365-2699.2006.01511.x

Hörnberg G, Ohlson M, Zackrisson O, 1997. Influence of bryophytes and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forest. Can J For Res 27(7): 1015-1023. http://dx.doi.org/10.1139/x97-045

Isagi Y, Kawahara T, Kamo K, Ito H, 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol 130(1): 41-52. http://dx.doi.org/10.1023/A:1009711814070

Ivancich H, Martínez Pastur G, Roig F, Barrera M, Pulido F, 2012. Changes in height growth patterns in the upper tree-line forests of Tierra del Fuego in relation to climate change. Bosque 33(3): 267-270. http://dx.doi.org/10.4067/S0717-92002012000300006

James TM, 2011. Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia's boreal forest. For Ecol Manage 262: 629-636.

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77: 437-470.

Kelly D, 1994. The evolutionary ecology of mast seeding. Trends Ecol Evol 9: 465-70. http://dx.doi.org/10.1016/0169-5347(94)90310-7

Kelly D, Harrison AL, Lee WG, Payton IJ, Wilson PR, Schauber EM, 2000. Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae). Oikos 90: 477-88. http://dx.doi.org/10.1034/j.1600-0706.2000.900306.x

Kelly D, Sork VL, 2002. Mast seeding in perennial plants: why, how, where? Ann Rev Ecol Syst 33: 427-447. http://dx.doi.org/10.1146/annurev.ecolsys.33.020602.095433

Koenig WD, Knops JM, 2000. Patterns of annual seed production by northern hemisphere trees: a global perspective. Am Nat 155: 59-69. http://dx.doi.org/10.1086/303302

Kon H, Noda T, Terazawa K, Koyama H, Ysaka M, 2005. Proximity factors causing mast seeding in Fagus crenata: The effects of resource level and weather cues. Can J Bot 83: 1402-1409. http://dx.doi.org/10.1139/b05-120

Kreps G, Martínez Pastur G, Peri PL, 2012. Cambio climático en Patagonia Sur: Escenarios futuros en el manejo de los recursos naturales. Ed. Instituto Nacional de Tecnología Agropecuaria. Buenos Aires, Argentina.

Kupferschmid AD, Bugmann H, 2005. Effects of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. For Ecol Manage 205: 251-265.

Lencinas MV, Martínez Pastur G, Moretto A, Gallo E, Busso C, 2007. Productividad diferencial de plántulas de Nothofagus pumilio bajo gradientes de luz y humedad del suelo. Bosque 28(3): 241-248. http://dx.doi.org/10.4067/S0717-92002007000300009

Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM, 2011. Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. For Ecol Manage 262: 1236-1250.

Liebhold AM, Koening WD, Bjornstad ON, 2004. Spatial synchrony in population dynamics. Ann Rev Eol, Evol and Syst 35: 467-490. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132516

Lieffers V, Messier C, Gendron F, Stadt K, Comeau P, 1999. Predicting and managing light in understory of boreal forests. Can J For Res 29: 796-811. http://dx.doi.org/10.1139/x98-165

Lindenmayer D, Franklin JF, Lõhmus A, Baker S, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J, Martínez Pastur G, et al., 2012. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Letters 5(6): 421-431. http://dx.doi.org/10.1111/j.1755-263X.2012.00257.x

Martínez Pastur G, 2006. Biometría y producción forestal para bosques naturales de Nothofagus pumilio en Tierra del Fuego. Doctoral Thesis. Universidad Nacional del Sur. 242 pp.

Martínez Pastur G, Lencinas MV, Peri PL, Arena M, 2007. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For Ecol Manage 243(2): 274-282.

Martínez Pastur G, Cellini JM, Peri PL, Lencinas MV, Gallo E, Soler R, 2009. Alternative silviculture with variable retention in timber management of South Patagonia. For Ecol Manage 258: 436-443.

Martínez Pastur G, Lencinas MV, Peri PL, Cellini JM, Moretto A, 2010. Long-term forest management research in South Patagonia - Argentina: lessons from the past, challenges from the present. Rev Chil Hist Nat 83: 159-169.

Martínez Pastur G, Peri PL, Cellini JM, Lencinas MV, Barrera M, Ivancich H, 2011a. Canopy structure analysis for estimating forest regeneration dynamics and growth in Nothofagus pumilio forests. Ann For Sci 68: 587-594. http://dx.doi.org/10.1007/s13595-011-0059-1

Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri PL, 2011b. Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For Ecol Manage 261: 178-186.

Martínez Pastur G, Jordán C, Lencinas MV, Soler R, Ivancich H, Kreps G, 2012. Landscape and microenvironmental conditions influence over regeneration dynamics in old-growth Nothofagus betuloides Southern Patagonian forests. Plant Biosyst 146(1): 201-213. http://dx.doi.org/10.1080/11263504.2011.650725

Martínez Pastur G, Soler R, Pulido F, Lencinas MV, 2013. Variable retention harvesting influences biotic and abiotic drivers along the reproductive cycle in southern Patagonian forests. For Ecol Manage 289(1): 106-114.

Massaccesi G, Roig F, Martínez Pastur G, Barrera M, 2008. Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees 22(2): 245-255. http://dx.doi.org/10.1007/s00468-007-0181-8

Masaki T, Oka T, Osumi K, Suzuki W, 2008. Geographical variation in climatic cues for mast seeding of Fagus crenata. Popul Ecol 50: 357-366. http://dx.doi.org/10.1007/s10144-008-0104-6

Monks A, Kelly D, 2006. Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol 31: 366-375. http://dx.doi.org/10.1111/j.1442-9993.2006.01565.x

Parker WC, Noland T, Morneault A, 2013. Comparative mast seed production in unmanaged and shelterwood white pine (Pinus strobus L.) stands in central Ontario. New Forests 44: 613-628. http://dx.doi.org/10.1007/s11056-013-9366-8

Rebertus AJ, Veblen Th, 1993. Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J Veg Sci 4(5): 641-654. http://dx.doi.org/10.2307/3236129

Richardson S, Allen R, Whitehead D, Carswell F, Ruscoe W, Platt K, 2005. Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 86(4): 972-981. http://dx.doi.org/10.1890/04-0863

Richter L, Frangi J, 1992. Bases ecológicas para el manejo del bosque de Nothofagus pumilio de Tierra del Fuego. Rev Fac Agron de La Plata 68: 35-52.

Robison SA, McCarthy BC, 1999. Potential factors affecting the estimation of light availability using hemispherical photography in oak forest understories. Bull Torrey Bot Club 126: 344-349.

Rosenfeld JM, Navarro Cerrillo RM, Guzmán Alvarez JR, 2006. Regeneration of Nothofagus pumilio (Poepp. et Endl.) Krasser forests after five years of seed tree cutting. J Environ Manage 78(1): 44-51. http://dx.doi.org/10.1016/j.jenvman.2005.03.009

Schauber EM, Kelly D, Turchin P, Simon C, Lee W, Allen R, Payton J, Wilson P, Cowan P, Brockie R, 2002. Masting by eighteen New Zealand plant species: The role of temperature as a synchronizing cue. Ecology 83(5): 1214-1225. http://dx.doi.org/10.1890/0012-9658(2002)083[1214:MBENZP]2.0.CO;2

Selås V, Piovesan G, Adams J, Bernabei M, 2002. Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can J For Res 32: 217-225. http://dx.doi.org/10.1139/x01-192

Smaill S, Clinton P, Allen R, Davis M, 2011. Climate cues and resources interact to determine seed production by a masting species. J Ecol 99: 870-877. http://dx.doi.org/10.1111/j.1365-2745.2011.01803.x

Soler R, Martínez Pastur G, Lencinas MV, Borrelli L, 2012. Differential forage use between native and domestic herbivores in southern Patagonian Nothofagus forests. Agrofor Syst 85(3): 397-409. http://dx.doi.org/10.1007/s10457-011-9430-3

Soler R, Martínez Pastur G, Peri PL, Lencinas MV, Pulido F, 2013. Are silvopastoral systems compatible with forest regeneration? An integrative approach in southern Patagonia. Agrofor Syst 87(6): 1213-1227. http://dx.doi.org/10.1007/s10457-013-9631-z

Stenburg P, Linder S, Smolander H, Flower-Ellis J, 1994. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. Tree Physiol 14: 981-995. http://dx.doi.org/10.1093/treephys/14.7-8-9.981

terBraak CJF, Šmilauer P, 2002. CANOCO reference manual and CanoDraw for Windows User's guide: software for canonical community ordination. Version 4.5. Microcomputer Power, Ithaca, New York, USA.

Villalba R, Luckman B, Boninsegna J, D'arrigo R, Lara A, Villanueva-Díaz J, Masiokas M, Argollo J, Solíz C, Lequesne C, et al., 2010. Dendroclimatology from regional to continental scales: Understanding regional processes to reconstruct large-scale climatic variations across the Western Americas. In: Dendroclimatology: Progress and Prospects. Series: Developments in Paleoenvironmental Research (Hughes M, Swetnam T, Díaz H, Eds). Ed. Springer. Amsterdam, Holanda. Vol. 11(7): 175-227.

Vodde F, Jogiste K, Gruson L, Ilisson T, Koster K, Stanturf JA, 2010. Regeneration in windthrow areas in Hemiboreal forests: The influence of microsite on the height growth of different tree species. J For Res 15: 55-64. http://dx.doi.org/10.1007/s10310-009-0156-2

Published
2015-06-12
How to Cite
Torres, A. D., Cellini, J. M., Lencinas, M. V., Barrera, M. D., Soler, R., Diaz-Delgado, R., & Martínez Pastur, G. J. (2015). Seed production and recruitment in primary and harvested Nothofagus pumilio forests: Influence of regional climate and years after cuttings. Forest Systems, 24(1), e016. https://doi.org/10.5424/fs/2015241-06403
Section
Research Articles