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Abstract
Antioxidant activity (AA) of black maize kernels attributed mainly to polyphenols has potential effects on health and possible 

defense functions against pests. Our objective was to evaluate the effects of maize polyphenols and AA in survival and growth of 
larvae of the corn borer Sesamia nonagrioides. We carried out two bioassays with S. nonagrioides larvae grown in artificial diet with 
white and black maize flour and control. AA was tested spectrophotometrically on each of the diets using four methods. The different 
measurements of AA were strongly correlated, indicating that these measurements were highly reliable. The control diet, the white-
maize-diet and black-maize-diet with vitamin C and without H2O2 had the highest antioxidant activity. The processing of the maize 
flour altered the AA of the polyphenols. The control treatment had the highest AA, and vitamin C had stronger AA than polyphenols. 
AA of vitamin C hides that of polyphenols probably due to environmental effects, dilution of polyphenols, or interactions with other 
substances. Larvae grew more in the control diet and the addition of H2O2 had not significant effects on weight. There was a weak rank 
correlation between AA and larval weight. Mortality was lowest for the control diet with or without H2O2 followed by white maize 
with or without H2O2 and black maize without H2O2. Effects of polyphenols depend on other substances that might interact with them. 
The results indicate that antioxidant activity has insecticide effects on young larvae and, as the larvae grow, antioxidants have positive 
effects on larvae.
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Introduction

Antioxidant activity (AA) has been associated to 
insecticide effects; therefore, plants with high AA 
could be used for developing eco-friendly repellents 
for the post-harvest protection of grain crops (Bedini 
et al., 2016). Nesci et al. (2012) reported insecticidal 
activity of synthetic antioxidants on insects that were 
vectors of fungal infections. Swiatek et al. (2014) found 
association between AA and plant defense against biotic 
and abiotic stresses in transgenic maize. Garcia-Lara & 
Bergvinson (2014) reported a significant association 
between insect resistance and AA in a maize population 
improved for insect resistance. Therefore, molecules 
with AA are potential natural insecticides.

Selection for intensity of red kernel color in maize 
yields high levels of anthocyanins, that vary from 5.38 
µmol/g fresh weight in black maize kernels to 0.28 
µmol/g in white grains of the same variety, and produce 
higher AA in the kernels with darker color (Rodríguez 
et al., 2013). Stonecipher et al. (1993) hypothesized that 
anthocyanins caused resistance to plant pathogens, but 
later research has questioned the role of anthocyanins 
in plant resistance to insects (Simmonds, 2003). There 
are no definitive evidences of effects of polyphenols on 
insect growth or survival in leaves (Costa-Arbulú et al., 
2001; Simmonds, 2003; Lev-Yadun & Kevin, 2008), but 
phenolic compounds may be associated with elevated 
chemical defenses (Simmonds, 2003; Karageorgou et 
al., 2008). A possible role of free phenols in Sesamia 
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nonagrioides resistance has been hypothesized by 
Santiago et al. (2005) based on the higher level of these 
compounds in the pith of genotypes resistant to corn 
borer. Some authors have published that free phenols 
are toxic when incorporated into artificial diets (Dreyer 
et al., 1981; Serratos et al., 1987; Arnason et al., 1992). 
However, the effects of free phenols on maize resistance 
to corn borer are not clear, and several hypothesis are 
being tested (Santiago et al., 2006).

The most important corn borer in the Mediterranean 
area is Sesamia nonagrioides (Lefèbvre) (Lepidoptera: 
Noctuidae) (Malvar et al., 1993; Cartea et al., 1994; 
Cordero et al., 1998; Butrón et al., 1999; Velasco et 
al., 2007). Late generations of corn borers feed on the 
grain of maize adult plants, causing direct yield losses 
(Larue, 1984). Laboratory bioassays are very useful for 
investigating the basis of plant resistance to insects, 
and have been used for the identification of biologically 
active compounds in crops (Harris, 1979; Schoonhoven 
et al., 1998). Our objective was to evaluate the effects 
of maize polyphenols and AA in survival and growth of 
larvae of the corn borer Sesamia nonagrioides.

Material and methods

Plant material 

The base population was the multicolor maize 
synthetic population EPS4. This synthetic was made 
in 1981 by mixing 100 kernels from each of three 
open-pollinated populations (Salcedo, Taboadelo and 
Cambados) from northwestern Spain with diverse 
kernel colors, followed by random mating for more 
than 10 generations (Rodríguez et al., 2013). Two 
random 300-kernel samples of white and black kernels 
were separated from the population EPS4. These two 
samples were multiplied independently by plant-to-
plant pollinations, using each plant solely as either 
male or female. The separated subsamples of white and 
black kernels were cleaned and grinded in a laboratory 
grinding mill. The flour was screened with a sieve of 
one millimeter in diameter.

Black kernels had high anthocyanin content 
5.38±0.018 µmol/g fresh weight while white kernels 
had only 0.28±0.018 µmol/g, while the difference 
in carotenoid content was lower (1.76±0.064 vs 
0.75±0.064 µmol/g in black and white kernels, 
respectively) (Rodríguez et al., 2013). Differences in 
pigment content among kernels with diverse colors 
explained most differences in AA, as the AA of the 
hydrophilic fraction was highly correlated to that of the 
pigments, while differences among kernel colors for 
the AA of the lipophilic fraction were not significantly 

different. Concerning the nutritive composition, this 
maize variety had around 11% of total protein, 5.5% 
of total fat, 1% of brute fiber, and 58% starch, without 
significant differences among kernel colors.

Bioassays

Two laboratory bioassays were conducted to 
investigate the effect of AA of white and black maize 
flour on growth and development of S. nonagrioides 
larvae. We used the artificial diet published by Farinós 
et al. (2004) as control treatment. The artificial diet 
was made starting with 1 liter of hot water, and then 
we added 2.5 g of benzoic acid and, after reaching the 
boiling point, 26 g of agar while homogenizing the 
mixture with an electric mixer. We introduced the bowl 
in cold water and, while the mix was cooling, we added 
43 g of yeast, 40 g of wheat germ and 160 g of maize 
flour while homogenizing with the electric mixer. The 
control treatment was made with a type of standard 
commercial maize flour called polenta. While the mix 
continued cooling, we added 6 g of ascorbic acid, 1 g of 
nipagin (from Sigma) and 1.55 g of Wesson salt mixture 
(from Sigma). When the mix reached 50 °C and was 
homogeneous, we poured it into plastic boxes.

In the first bioassay, for each maize flour treatment, 
the polenta of the artificial diet was replaced with the 
same amount of white or black maize flour, respectively. 
A second sample of each (white or black, respectively) 
maize-diets included vitamin C (10 g/L). Therefore, 
there were five different diets: control, white maize, 
white maize + vitamin C, black maize, and black maize 
+ vitamin C. The experiment followed a randomized 
complete block design with four repetitions. Sixty 
neonate larvae per repetition and treatment were 
randomly assigned to each diet by placing a 1 cm-
diameter piece of diet plus one larva in each individual 
35 mm-diameter Petri dish. The neonate larvae were 
obtained by taking eggs from maize plants grown in a 
greenhouse with a large population of moths hatched 
from larvae collected from the field; eggs were placed 
on pieces of artificial diet made following the recipe 
shown above for the control diet; when the larvae were 
hatched are reached a 2-mm size, the alive larvae were 
taken for the bioassay. The piece of diet was changed 
by a fresh piece two times per week in order to allow 
the larvae to eat fresh diet ad libitum. After two weeks, 
half of the larvae (30) of each treatment continued to 
be fed on the same diet while the other larvae were fed 
with the same diet but supplemented with 5% H2O2 in 
order to produce oxidative stress; this concentration of 
H2O2 is enough for inducing oxidative stress (Rao et al., 
1997). Initial larval weight was recorded and then the 
weight of each larva was taken two times per week. At 
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the same time we took larvae weights, we changed the 
piece of diet during four weeks, renewing the piece of 
diet and recording the number of dead larvae or pupa; 
therefore we took up to 8 weights per larvae.

A second bioassay was carried out in order to 
double check the effects of white vs. black maize flour, 
avoiding the interference of any other factor. In this 
bioassay we followed a simplified version of the first 
bioassay, wherein only the white and the black-flour 
treatments were performed. The recipes and methods 
were as in the first bioassay. This second bioassay 
was analyzed separately because the experimental 
design was different and, therefore, they could not be 
combined in a single analysis. Furthermore, the second 
bioassay intended to simplify the conditions in order 
to allow a direct comparison between black and white 
flour without interactions from other compounds.

Evaluation of antioxidant activity 

Antioxidant activity of the diets was tested on 
random samples of each of the five diets with and 
without H2O2. For doing so, 5 g of each fresh diet were 
lyophilized. As the bioassays ended, lyophilized diets 
were grinded in an analytical grinding mill (Model A10, 
IKA, Germany). Two subsamples were taken from each 
sample and antioxidant capacity analyses carried out 
per duplicate. Freeze-dried and ground samples (10 mg) 
were extracted with 1 mL of 80% aqueous methanol in 
dark maceration for 24 h. After centrifugation (3700 
rpm, 5 min), methanolic extracts were employed in 
order to determine AA by using four methods: ferric 
reducing antioxidant power (FRAP) (Benzie & Strain, 
1996); 2,2-azinobis (3-ethyl-benzothiazoline-6-
sulfonic acid) (ABTS) (Miller & Rice-Evans, 1997); 
2,2-diphenyl-1-picrylhydrazyl (DPPH) (Brand-
Williams et al., 1995); and Folin-Ciocalteu (FOLIN) 
(Singleton & Rossi, 1965). We used the four methods 
of AA determination following Sotelo et al. (2014) 
because, although normally they are highly correlated, 
these four methods measure slightly different aspects of 
AA, for example, with DPPH method, the reaction takes 
place in methanol, where for the other three methods, 
reaction occurs in water. Nevertheless, FOLIN is the 
most common method for AA determination.

All AA assays were carried out in a microplate 
spectrophotometer (Spectra MR; Dynex Technologies, 
Chantilly, VA, USA). Standards prepared with different 
concentrations of Trolox (0, 0.008, 0.016, 0.024, 0.032 
and 0.04 mM) were measured for FRAP, DPPH and 
ABTS analyses and AA values were normalized to 
Trolox equivalents per gram of dry weight. Standards 
prepared with different concentrations of gallic acid 
(0, 0.008, 0.016, 0.024, 0.032 and 0.04 mM) were also 

measured. Results of FOLIN assay were expressed in 
terms of micromoles of gallic acid equivalents per gram 
of dry weight.

Statistical analysis 
 
Repeated measures analysis was used to analyze the 

weekly weight measurements of larvae. A growth curve 
of weight on time was estimated for each treatment, 
and homogeneity of linear and quadratic coefficients 
was tested for each pair of treatments. The analysis 
was made using the MIXED procedure of SAS (2008). 
All factors were considered random except treatment 
which was considered fixed. The covariance was 
calculated following Littell et al. (1996). Additionally, 
analysis of variance were made for each bioassay by 
using the using the MIXED procedure of SAS (2008), 
considering repetitions as random effects and color 
grains as fixed effects. And comparisons of means 
among treatments were calculated for larval weight for 
each time with the Fisher’s protected LSD.

Finally, to analyze larval survival, the Kaplan–Meier 
estimates of the survival function were calculated for 
each treatment, and curves were compared using the log 
rank test (Cantor, 1997; Ordás et al., 2002). Survival 
functions were significantly different if they deviated 
from the expected values of the null hypothesis (that 
survival functions are equivalent in all treatments). 
The statistic determines whether differences between 
survival functions are significantly different at any 
probability level, thus indicating that larvae have 
significantly different survival in some treatments than 
in others (LIFETEST procedure of SAS). Missing 
larvae were censured for larval survival analysis, which 
means that the analysis considered that larvae lived at 
least until they disappeared. When larvae reached pupal 
stage, the larvae survival was scored as reaching 30 
days. 

Results and discussion

Antioxidant activity of diets 

The four measurements of AA were strongly 
correlated, with highly significant correlations 
coefficients that varied from r2 = 0.832 between FOLIN 
and DPPH, to r2 = 0.996 between FRAP and ABTS. 
Correlations were above 0.9 for ABTS and DPPH 
(r2= 0.979, p< 0.001), DPPH and FRAP (r2= 0.979, p< 
0.001), ABTS and FOLIN (r2= 0.928, p< 0.001), and 
FRAP and FOLIN (r2= 0.920, p< 0.001). These values 
are in agreement with previous results indicating 
that correlations between methods for measuring AA 
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were very high (Huang et al., 2005; Kusznierewicz 
et al., 2008; Soengas et al., 2012). Our coefficient 
correlations were higher than those previously reported 
for other crops (Zhi-Xiang et al., 2011; Sotelo et al., 
2014), indicating that these measurements were highly 
consistent and reliable. Since the four measures of AA 
were highly correlated, we will focus on FOLIN (Table 
1, Fig. 1). 

Our results show that polenta had the highest AA, 
and that vitamin C had stronger AA than polyphenols. 
The recipe for the control diet already includes vitamin 
C because it has been designed for optimum growth 
of larvae (Farinós et al., 2004). Adding H2O2 to the 
diet resulted in a non-significant reduction of AA, 
even though we used higher concentration of H2O2 
than previous reports (Rao et al., 1997). Vitamin C 

always increased AA, significantly for white flours. 
White flour had lower AA than black flour but, when 
an external antioxidant, such as vitamin C, or when an 
external oxidant, such as H2O2, is added, the order of 
AA is reversed in black and white flour because AA 
of vitamin C hides that of polyphenols. This could be 
due to an interaction between two antioxidants such 
as vitamin C and polyphenols in black flours or that 
the processing of the maize flour alters the AA of the 
polyphenols. Accordingly, several authors have shown 
that a cooking process, such as nixtamalization, reduces 
pigment content and antioxidant capacity (Del Pozo-
Insfran et al., 2006; De la Parra et al., 2007; López-
Martínez et al., 2011; 2012). The causes of AA loss can 
be temperature and acidity, which have been reported as 
agent of antioxidant reduction by Li et al. (2011) who 
reported that citric acid significantly affects polyphenols 
content and AA. Furthermore, adding maize flour to 
the diet implies a dilution of AA that minimizes the 
presumable AA of polyphenols, as previously shown 
by Rodríguez et al. (2013), who reported a reduction 
in pigments’ content and their respective antioxidant 
capacity due to dilution. Furthermore, as Petroni et 
al. (2014) stated, one major limitation in assigning a 
health property to polyphenols is the influence of other 
metabolites in the diet, acting as possible confounding 
factors. Indeed, there could be interactions between 
antioxidant substances, as indicated by Huang et al. 
(2005).

Effects of antioxidant activity on larval 
development and survival 

In the first bioassay, the variation of larval weight as 
they feed on diets, indicate that the larvae always grow 
more in the control diet, designed for optimum nutrition 
of larvae, than in the maize-diets, and the addition of 
H2O2 has not significant effects on larval growth (Table 
2). Besides, larvae fed on flour without oxidative 
stress (without H2O2) have grown more in diets with 
more antioxidants (polyphenols and / or vitamin C). 
The difference in growth coefficient between black 
flour + vitamin C and white flour was significant. In 
contrast, when larvae were fed on diets with oxidative 
stress (with H2O2), the larvae grew more in the diet with 
white flour + vitamin C. We would not expect that this 
diet have had the highest antioxidant concentration but 
it was the diet with H2O2 with the highest AA. This is 
probably due to vitamin C - polyphenols interaction 
discussed above.

 In the second bioassay, differences were neither 
significant between coefficients of regression of 
larval weight nor between larval weight at any stage 
of development, corroborating the previous results 

Table 1. Antioxidant activity (mean ± standard deviation) 
of diets containing different combinations of maize 
flour, vitamin C and H2O2 for feeding larvae for Sesamia 
nonagrioides.

Maize 
flour Vitamin C H2O2

FOLIN
(mg galic acid/g DW)

White No Yes 1.93±0.03
No 2.92±1.35

Yes Yes 5.58±0.56
No 6.84±0.25

Black No Yes 1.68±0.34
No 3.85±1.46

Yes Yes 4.84±0.10
No 5.63±0.54

Control Yes Yes 5.047±0.37
No 5.69±0.15

DW: dry weight 

Figure 1. Antioxidant activity (AA) (error bars indicate 
standard deviation of the means) of diets containing 
different combinations of maize flour, vitamin C (VC) and 
H2O2 for feeding larva for Sesamia nonagrioides based on 
Folin method. DW: dry weight.

H 2
0 2

H 2
0 2

H 2
0 2

H 2
0 2

H 2
0 2
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which showed that differences among black and white 
flour alone were not uncovered with this experimental 
design.

Larval weight was not related to survival as shown by 
the low correlation between larval weight and Log-rank 
(r2 = 0.30, p=0.392). Survival analyses indicated that 
the proportion of dead larvae was lowest for the control 
diet with or without H2O2 (Table 2). The values of Log-
rank were also negative for white maize with or without 
H2O2 and for black maize without H2O2. Mortality was 
highest for both white and black maize irrespective of 
the addition of vitamin C or H2O2. These results show 

that the relationship between AA and mortality was not 
clear; in fact, rank correlations between AA and Log-
rank was not significantly different from zero (r2= -0.14, 
p=0.701). 

The weights recorded in the first bioassay showed 
that the larvae grown in the control diet had always 
the highest weights (Table 3). At first stages of 
development, higher concentration of antioxidants may 
be detrimental to larvae, i.e. larvae fed on white flour 
weighed significantly more than those fed on black 
flour with vitamin C. As larvae grew up, black flour 
with vitamin C increased larval weight to values that 

Table 2. Lineal regression coefficients (b) and standard errors (SE), and values 
of the log-rank statistic for homogeneity of survival of larval weight over 
time when fed with control diet, replacing maize polenta with white or black 
maize flour and with or without vitamin C, and adding hydrogen peroxide as 
oxidative stress.

Maize 
flour Vitamin C H2O2 Intercept b ± SE Log-Rank2

White No Yes -32.8 a1 13.3±0.6 a -7
No -23.8 a 6.9±0.6 c -5

Yes Yes -35.3 a 10.2±1.2 b 16
No -23.0 a 7.8±1.2 bc 15

Black No Yes -28.8 a 7.8±0.8 c 2
No -26.0 a 7.6±0.6 bc -6

Yes Yes -26.8 a 7.6±1.1 c 14
No -31.1 a 9.3±0.9 b 10

Control Yes Yes -32.8 a 13.3±0.6 a -26
No -34.8 a 12.1±0.6 a -13

1Means followed by the same letter, within each column, were not significantly 
different according to Ls-means comparisons at p<0.15 2Log-rank statistic shows 
significant differences among survival curves at p ≤ 0.05.

Table 3. Larval weight along time when fed with control diet, replacing maize polenta with white or 
black maize flour and with or without vitamin C.

Maize flour Vitamin C H2O2

Number of days of bioassay

4 7 11 14 18 21 25 28

White No Yes - - - - 113 b 164 b 234 b 239 b
No 4 b 14 b 33b 63 b 90 b 136 c 174 b 175 b

Yes Yes - - - - 147 b 207 b 217 b 193 b
No 3 bc 12 ab 38 b 76 b 125 b 164 bc 181 ab 165 ab

Black No Yes - - - - 102 b 153 b 190 b 207 b
No 3 bc 11 b 43 b 47 b 85 b 139 c 194 b 189 b

Yes Yes - - - - 110 b 162 b 188 b 180 b
No 2 c 6 b 21 b 58 b 132 b 208 ab 241 ab 210 ab

Control Yes Yes - - - - 229 a 246 a 306 a 357 a
No 6 a 35 a 82 a 161 a 193 a 258 a 263 a 279 a

1Means followed by the same letter, within each column, were not significantly different according to Ls-means 
comparisons at p<0.15
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were not significantly different from the control from 
week sixth to eighth, and so did white flour with vitamin 
C for weeks seventh and eighth. Therefore, vitamin C 
has positive effects on larval growth. Besides, there 
was a weak relationship between AA and larval weight; 
actually, rank correlations between AA and larval 
weight were positive and moderate (r2 = 0.51, p=0.136).

The effects of AA of polyphenols on growth of 
corn borers can be due to a possible insecticide effect 
as proposed by Bedini et al. (2016) or to the positive 
effect of antioxidant nutrients on health as shown by 
Petroni et al. (2014). As previous authors have shown, 
polyphenols could have both positive and negative 
effects on larval health and growth, depending on other 
substances that might interact with them (Costa-Arbulú 
et al., 2001; Karageorgou et al., 2008; Lev-Yadun & 
Kevin, 2008). 

As conclusion, these results indicate that during the 
first stages of larval development, antioxidants have 
an insecticide effect, while, as the larvae grow up, 
antioxidants favors larvae growth. Furthermore, the 
antioxidant activity of maize polyphenols interacts with 
other antioxidant substances.
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