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Abstract

The empirical best linear unbiased prediction (eBLUP) is usually based on the assumption that the residual error 
variance (REV) is homogenous. This may be unrealistic, and therefore limits the accuracy of genotype evaluations 
for multi-location trials, where the REV often varies across locations. The objective of this contribution was to 
investigate the direct implications of the eBLUP with different considerations about REV based on the mixed model 
for evaluation of genotype simple effects (i.e. genotype effects at individual locations). A series of 14 multi-location 
trials from a rape-breeding program in the north of China were simultaneously analyzed from 2012 to 2014 using 
a randomized complete block design at each location. The results showed that the model with heterogeneous REV 
was more appropriate than the one with homogeneous REV in all of the trials according to model fitting statistics. 
Whether the REV differences across locations were accounted for in the analysis procedure influenced the variance 
estimate of related random effects and testing of the variance of genotype-location (G-L) interactions. Ignoring 
REV differences by use of the eBLUP could result not only in an inflation or deflation of statistical Type I error 
rates for pair-wise testing but also in an inaccurate ranking of genotype simple effects for these trials. Therefore, 
it is suggested that in application of the eBLUP for evaluation of genotype simple effects in multi-location trials, 
the heterogeneity of REV should be accounted for based on mixed model approaches with appropriate variance-
covariance structure.
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Introduction

Best linear unbiased prediction (BLUP), as origi-
nally suggested by Henderson (1975) and verified by 
Harville (1976), has a clearly understood theoretical 
basis. It is sought such that the correlation between 
the true and predict effect is maximized and the mean 
squared error of prediction is minimized among all 
linear unbiased predictor, provided the assumed model 
holds and the parameters of the model are known 
(Searle et al., 1992; Mrode, 2005). If parameters are 

estimated, this optimality no longer holds, but it can 
be hoped that the performance of the so-called eBLUP 
(empirical BLUP) is not far from optimal (Piepho, 
1998). A lot of studies (Cornelius et al., 1994; Piepho, 
1994, 1998; Piepho & Möhring, 2005) have shown 
that the predictive accuracy of the eBLUP based on a 
two-way analysis of variance (ANOVA) model was 
better than that of least-squares estimators based the 
same models and other models, such as the additive 
main effects multiplicative interaction (AMMI) models 
(Piepho, 1998). Therefore, eBLUP has recently gained 
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increasing acceptance and use for genotype evaluation 
in plant breeding trials (Smith et al., 2005; Piepho et al., 
2008; Kleinknecht et al., 2013). 

In the analysis of yield trial data from multiple-
location trials it is common to assume a mixed linear 
model, where genotypes are fixed while locations and 
interactions are random (Cochran & Cox, 1957; Shukla, 
1972; Steel & Torrie, 1980; Kelly et al., 2007). In this 
context, the genotype simple effects at given locations 
can be evaluated using the eBLUP. The eBLUP based 
on mixed model has an advantage of its applicability for 
unbalanced data. Another salient feature of the eBLUP 
based on mixed model is that it is not only possible 
to consider the correlation (or variance-covariance) 
structure of genotype-location (G-L) interaction but 
also to account for residual error variance (REV) 
heterogeneity between the trials conducted in diffe-
rent locations with different levels of precision and 
eventually to consider spatial variation of error terms. 
Apart from these, t-tests using the eBLUP can be 
constructed as a worthwhile alternative method for the 
hypothesis test about genotype effects based on the 
mixed model framework (Littell et al., 1996, 2006), 
although BLUP is originally developed for ranking 
and selection (Robinson, 1991). Some authors have 
examined the usefulness of the eBLUP t-tests based on 
the mixed model (Forkman & Piepho, 2013; Hu, 2015). 

In China, in traditional analysis of the variety trial 
data with random locations, if there is evidence of 
variety-location interaction, the variety simple effect 
difference at specific locations is tested by analyzing 
each location separately. Such approach is not only 
inconsistent with mixed model theory but also can limit 
the power and precision of inference at each location 
(Littell et al., 1996), because with random locations 
the appropriate method of inference for variety simple 
effects at specific locations is BLUP, which permits 
location-specific inference using information from the 
entire trial for all locations simultaneously (Atlin et al., 
2000a; Piepho & Möhring, 2005; Leiser et al., 2012; 
Windhausen et al., 2012; Kleinknecht et al., 2013). In 
China and also in some other countries, the statistical 
test about difference of experiment effects being random 
or associated with random effects is usually not done or 
done not based on BLUP in practice (Littell et al., 1996; 
Smith et al., 2005).

The usual application of eBLUP as well as eBLUP 
t-tests, as considered in most previous studies, assumed 
that the REV was homogeneous. However, data from 
multiple-location trials are often characterized by strong 
heterogeneous error variation across environments 
(Piepho, 1995; Casanoves et al., 2005; Hu et al., 
2013; Singh et al., 2013). The implication of the 
heterogeneity of the REV for evaluation of genotype 

effects by use of the eBLUP has not yet been examined. 
The objective of this contribution was to compare 
the evaluation difference by use of the eBLUP with 
different considerations about REV, i.e. the eBLUP 
based on the mixed model with homogeneous REV 
and that with heterogeneous REV, in view of ranking 
and pair-wise test of genotype simple effects based 
on diverse data sets from realistic multi-location trials 
and hence to convince the practitioner of using the 
appropriate procedure for genotype effect evaluation, 
where the variance heterogeneity of residual error 
effects would be accounted for. The study contains 
three consecutive steps: (1) fitting the mixed model 
to each data set using restricted maximum likelihood 
(REML) under two different considerations about 
REV, one assumed homogeneous REV and the 
second assumed heterogeneous REV, and comparing 
the appropriateness of the model with the different 
considerations about REV; (2) examining the influence 
of the two considerations on estimate and testing of 
related variances; (3) comparing the difference between 
the eBLUP with different considerations of REV in 
ranking and difference testing of genotype simple 
effects.

Material and methods

Trials and data analysis 

The data sets used in this study came from multi-
location trials in a rape (Brassica napus L.) breeding 
program in northern China conducted from 2012 to 
2014. There were four trial groups (A-B-C-D) in these 
regions for different production types during each year. 
There fore, in total there were 12 data sets (3 years × 
4 groups). Some 12–13 genotypes were tested at 10–12 
locations each year. The genotypes were totally diffe-
rent each year apart from a control variety. All trials at 
each location were laid out as a randomized complete 
block design with three replicates. All trial plots were 
20 m2, planting density was 2.8×105 plants/ha and yield 
data was expressed in kilograms of seed per plot. The 
details of the data set structure are described in Table 1.

Each of the 12 year-group combinations was treated 
as an independent data set and separately analyzed 
based on the mixed model, in which genotype effects 
were fixed, and block, location and G-L interaction 
effects were random, respectively. Assuming location 
as random has an advantage that wide space inference 
about genotype main effects (i.e. genotype effects 
averaged over the entire population represented by 
locations) is applicable to entire target population of 
locations, not only observed but also unobserved, and 
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has been adopted by organizers of variety trials in 
many countries (Littell et al., 1996). Two procedures 
for evaluation of the simple effect of genotypes at 
specific locations or sets of locations (i.e. location-
specific genotype effects) were used. The first was the 
eBLUP based on a two-way ANOVA mixed model with 
homogeneous REV structure across locations, and the 
second was the eBLUP based on the same model with 
heterogeneous REV structure across locations. 

The models and procedures considered here were 
implemented in the context of the mixed linear models 
using PROC MIXED of the SAS System, vers. 9.2 (SAS 
Inst., 2011). The t-test of the eBLUP was constructed 
using the program statement “ESTIMATE” of SAS 
PROC MIXED. The denominator degrees of freedom 
of t-test were determined using the Kenward-Roger 
method (Kenward & Roger, 1997) as implemented in 
the SAS System. This approximation uses the basic 
idea of Satterthwaite (1941). Its extension relative to 
the Satterthwaite method of Giesbrecht & Burns (1985) 
and Fai & Cornelius (1996) is an asymptotic correction 
of the estimated standard error of model effects due to 
Kackar & Harville (1984) in small and/or unbalanced 
data structures.

Assessment of REV and G-L interaction

The Akaike Information Criterion (AIC) (Oman, 
1991) was used to evaluate models with homogeneous 
and heterogeneous REV. The smaller the AIC the 
better is the performance of the model. Since REML 
was used, only models with the same fixed-effects 
structure can be compared. AIC is preferred over the 
Bayesian Information Criterion (BIC), because the 
latter has a penalty that involves sample size in terms 
of independent observational units, and the concept of 
“effective” sample size is not well defined for mixed 
models, where random effects give rise to possibly 
complex dependencies among observations (Raman et 
al., 2011). In fact, there is no established definition of 
BIC for mixed models (Pauler, 1998). 

Since the model with homogeneous REV 
is a reduced model compared to a model with 
heterogeneous REV based on we also used the 
likelihood-ratio test (LRT) to assess the relative 
goodness of fit of the two models. With the same 
principle, whether the variance of G-L interaction, i.e. 
the effect of G-L interaction, significantly existed was 
also identified using the LRT. 

Results

Appropriateness of procedures with different 
considerations of REV

The AIC value of the model with hetero geneous 
REV was substantially smaller than that with 
homogeneous REV for all data sets (Table 2), which 
implies that the REV of the trials varied across the 
locations and that the analysis procedures with 
heterogeneous REV were more appropriate than 
their homogeneous REV versions. This can be fur-
ther verified given that the model with hetero ge-
neous residu  al variances fitted the data significantly 
(p < 0.001 in the LRT, Table 3) better than the model 
with homogeneous residual variances in all of the 
trials. 

Table 1. Structure of data sets of rape evaluation trials for 
north China.

Year Groups
Number of

varieties locations
2012 A 13 12

B 13 12
C 13 12
D 12 12

2013 A 12 10
B 12 10
C 12 10
D 12 10

2014 A 12 11
B 12 10
C 12 10
D 12 11

Table 2. Akaike Information Criterion (AIC) values of the model with 
homogeneous (Hom) and heterogeneous (Het) residual error variance 
(REV) in fitting the data sets. Smaller AIC values indicate better fitting 
models.

Year
Group A Group B Group C Group D

Hom Het Hom Het Hom Het Hom Het
2012 604.2 568.3 572.6 514.4 706.5 618.0 560.6 501.9
2013 457.7 428.1 495.4 482.2 521.3 473.6 492.0 455.2
2014 704.1 576.1 596.3 586.2 705.6 630.2 514.6 483.3
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χ2 value obviously showed difference between the two 
considerations of the REV. This suggests that whether 
or not considering the variation of REV also would 
influence the test about the variance of G-L interaction 
effects. Just because of the extremely small p-value of 
the LRT their difference did not showed at α = 0.01 
level in these special cases. 

Ranking of genotypes using eBLUP with different 
considerations of REV

As shown above, the variance of G-L interaction was 
highly significantly in all of the trials analyzed in this 
study. Therefore, evaluations of genotype simple effects 
at specific locations were necessary. One evaluation lies 
in ranking genotypes. As a detailed example for showing 
genotype ranking differences between the eBLUP with two 
different considerations of REV, Table 6 shows the ranking 
result of genotype simple effects at different locations 
using the eBLUP with homogeneous REV and that with 
heterogeneous REV, respectively, for the trial of group 
B in 2013. There was some rank discrepancy between 
the two eBLUP versions. For example, at location L1, 
genotype 12 ranked first by the eBLUP with homogeneous 
REV and second by the eBLUP with heterogeneous 
REV; at location L2, genotype 12 ranked fifth by the 
eBLUP with homogeneous REV and third by the eBLUP 
with heterogeneous REV. For this trial the proportion of 
locations with rank discrepancy of the genotype simple 
effect between the two eBLUP versions reached 60.0% 
(6 locations out of 10, i.e. locations L1, L2, L4, L6, L8 
and L10). At the locations with rank discrepancy of the 
genotype simple effect, the proportion of genotypes 
with rank discrepancy between the two eBLUP versions 
reached from 33.3% (4 genotypes out of 12, i.e. genotypes 

Estimate and test of variances under different 
considerations of REV

As well known, the eBLUP is based on the estimate 
of variances, and only when the variance of G-L 
interaction statistically significantly exists in multi-
location trials an evaluation of the simple effects of 
genotypes at specific locations is just meaningful. 
Therefore, a comparatively investigation of the es-
timate and test of the G-L interaction variance under 
different considerations about residual error effects may 
be valuable. 

In Table 4 are the percentage differences of the 
estimates of the involved variance of the models with 
homogeneous REV from their heterogeneous REV 
versions. There was some discrepancy of variance 
estimates between the two considerations about REV. 
And this discrepancy was large for the block variance, 
ranging from -57.0% (for the trial of group B in 2012) to 
380.0% (for the trial of group C in 2013), intermediate 
for the G-L interaction variance, ranging from -0.7% 
(for the trial of group B in 2014) to 13.1% (for the 
trial of group A in 2013), and very small for location 
variance, ranging from -0.8% (for the trial of group C 
in 2013) to 1.7% (for the trial of group C in 2012). This 
suggest that whether considering the REV variation 
across locations had impact mainly on estimate of 
the variance for block and G-L interaction effects and 
slightly on estimate of the variance for location effects.

The p-value of the LRT about the variance of G-L 
interaction effects was smaller than 0.0001 under both 
considerations of the REV in all of the considered trials 
(Table 5), which is extremely small compared to α = 0.01 
and means that the variance of G-L interaction effects 
existed highly significantly in these trials. However, the 

Table 3. Likelihood-ratio test (LRT) results of the model with heterogeneous residual error 
variance (REV) compared to that with homogeneous REV in fitting the trail data sets.

Year
Group A Group B Group C Group D

df χ2 p-value df χ2 p-value df χ2 p-value df χ2 p-value
2012 11 57.9 < 0.0001 11 80.2 < 0.0001 11 110.5 < 0.0001 11 80.7 < 0.0001
2013 9 47.6 < 0.0001 9 31.2 < 0.0001 9 65.7 < 0.0001 9 54.8 < 0.0001
2014 10 148.6 < 0.0001 9 28.1 0.0002 9 92.8 < 0.0001 10 51.3 < 0.0001

df: degrees of freedom.

Table 4. The percentage difference of the variance estimates based on the model with homogeneous residual error 
variance (REV) compared to its heterogeneous version for the trials.

Variance
2012 2013 2014

A1 B C D A B C D A B C D
Location 0.1 0.4 1.7 0.6 -0.3 -0.2 -0.8 -0.3 0.3 -0.1 0.9 0.0
Genotype-location interaction 1.8 12.6 8.1 -0.5 13.1 7.3 0.6 6. 9 0.1 -0.7 4.9 1.3
Block -28.6 -57.0 -42.8 -13.5 -9.4 17.8 380.0 -7.7 -51.6 78.1 -45.3 351.6

1 Letters are related to groups.
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Table 5. Likelihood-ratio test (LRT) results for the variance 
of genotype-location (G-L) interaction effects obtained 
from the model with homogeneous and heterogeneous 
residual error variance (REV) for the trials.

Year Group
Homogeneous REV Heterogeneous REV
df χ2 p-value df χ2 p-value

2012 A 2 421.3 < 0.0001 2 286.9 < 0.0001
B 2 191.5 < 0.0001 2 135.0 < 0.0001
C 2 171.1 < 0.0001 1 146.3 < 0.0001
D 1 200.0 < 0.0001 1 201.4 < 0.0001

2013 A 2 186.8 < 0.0001 2 146.5 < 0.0001
B 1 136.5 < 0.0001 1 90.2 < 0.0001
C 1 49.9 < 0.0001 2 77.2 < 0.0001
D 2 167.7 < 0.0001 1 162.3 < 0.0001

2014 A 2 151.5 < 0.0001 1 238.2 < 0.0001
B 2 245.4 < 0.0001 1 221.0 < 0.0001
C 2 147.6 < 0.0001 1 178.9 < 0.0001
D 2 308.5 < 0.0001 2 306.1 < 0.0001

df: degrees of freedom. The df theoretically should be 1 in the 
LRT for variance of G-L interaction effects in all cases. Because 
the variance for block in some cases was estimated null, when 
the G-L interaction effects were dropped in the analysis, the df of 
the LRT in these cases became 2. 

2, 6, 10 and 12 at location L1, and genotypes 2, 3, 7 
and 9 at location L8) to 58.3% (7 genotypes out of 12, 
i.e. genotypes 1, 4, 6, 7, 9, 11 and 12 at location L2, and 
genotypes 3, 4, 5, 6, 7, 8 and 10 at location L10). For 
all trials, the proportion of locations and genotypes with 
rank discrepancy between the two eBLUP versions is 
summarized in Table 7. It is to observe that there was rank 

discrepancy between the two eBLUP versions in all of the 
trials. The proportion of locations with rank discrepancy 
of the genotype simple effect between the two eBLUP 
versions reached from 18.2% (for the trial of group D in 
2014) to 100% (for the trial of group A in 2014). At the 
locations with rank discrepancy of the genotype simple 
effect, the proportion of genotypes with rank discrepancy 
of the genotype simple effect between the two eBLUP 
versions reached from 15.4% (for the trial of group A in 
2012) to 58.3% (for the trial of group B in 2013).

Testing of genotype simple effects using eBLUP 
with different considerations of REV

We also tested genotype simple effects when 
there is variance of G-L interaction. To illustrate the 
difference for pair-wise testing of genotype simple 
effects between the two eBLUP versions, the ratio of 
the number of genotype pairs with significant (α = 0.05) 
differences based on the eBLUP with heterogeneous 
REV compared to its homogeneous version is given 
in Table 8. With exception of L1–L2 locations for the 
trials of groups A, C and D in 2012, group C in 2013, 
as well as groups C and D in 2014, where the number 
of genotype pairs with significant differences was the 
same (i.e. the ratio of the number of genotype pairs 
with significant differences between the two eBLUP 
versions was unity), there was a substantial discrepancy 
(i.e. the mentioned ratio was not unity) of the number of 
genotype pairs with significant differences between the 
two eBLUP versions at most locations for these trials 
and at all locations for the other six trials. 

Table 6. Yield rank of genotypes at different locations (L1-L10) for the trial of group B in 2013 according 
to the genotype effect estimates based on the eBLUP with homogeneous (Hom) and heterogeneous (Het) 
residual error variance (REV). The genotypes with different rank in Hom to that in Het are in bold type.

Rank
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

H
om H
et

1 121 2 2 2 3 3 2 2 2 2 2 2 2 2 12 12 9 9 2 2
2 2 12 3 3 2 2 3 3 3 3 3 8 3 3 2 3 2 2 12 12
3 3 3 6 12 12 12 12 10 12 12 8 3 9 9 3 2 5 5 3 6
4 5 5 8 8 9 9 10 12 10 10 10 10 12 12 5 5 7 7 6 3
5 7 7 12 6 8 8 5 5 5 5 9 9 6 6 9 7 3 3 8 10
6 9 9 4 7 5 5 9 9 4 4 5 11 7 7 7 9 10 10 10 4
7 8 8 7 9 4 6 6 11 11 11 12 5 8 8 8 8 6 6 4 8
8 6 10 9 4 6 4 8 6 8 8 11 12 4 4 10 10 8 8 5 7
9 10 6 5 5 7 7 11 8 9 9 7 7 5 5 6 6 12 12 7 5

10 4 4 10 10 10 10 7 7 6 6 4 4 10 10 11 11 4 4 9 9
11 11 11 1 11 11 11 4 4 7 7 6 6 11 11 4 4 1 1 11 11
12 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 11 1 1

1 Numbers are related to genotypes.
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Table 7. Percentage of locations and genotypes with rank discrepancy of the genotype 
simple effect between the eBLUP with homogeneous and that with heterogeneous 
residual error variance (REV) for the trials.

Year
% of locations % of genotypes

A1 B C D A B C D
2012 33.3 33.3 58.3 41.7 15.4–15.4 15.4–30.8 15.4–30.8 16.7–50.0
2013 50.0 60.0 70.0 40.0 16.7–50.0 16.7–58.3 16.7–16.7 16.7–16.7
2014 100.0 40.0 50.0 18.2 16.7–33.3 16.7–16.7 16.7–33.3 16.7–16.7

1 Letters are related to groups.

Table 8. The ratio of the number of genotype pairs with significant (α = 0.05) differences based 
on the eBLUP with heterogeneous residual error variance (REV) compared to its homogeneous 
version for different locations (L1-L12) of the trials.

Location
2012 2013 2014

A1 B C D A B C D A B C D
L1 1.46 1.15 1.57 0.95 0.80 1.14 0.86 1.22 0.89 0.86 0.44 1.65
L2 0.94 0.70 0.50 0.96 0.82 0.71 0.76 0.73 2.22 0.83 0.57 1.00
L3 0.98 0.96 1.09 0.88 0.90 0.93 0.54 0.56 2.27 0.95 1.27 1.26
L4 0.85 1.00 2.86 1.02 1.11 0.80 1.54 1.78 0.64 0.85 2.07 0.84
L5 1.00 1.07 1.77 1.55 1.38 1.21 0.89 0.89 0.29 1.20 1.00 0.80
L6 2.12 1.96 0.94 0.15 0.67 0.56 1.65 1.24 1.46 0.71 1.47 0.92
L7 0.86 1.07 1.18 1.23 1.14 1.04 1.00 1.18 1.59 0.81 1.26 0.87
L8 1.29 1.13 1.45 1.22 1.18 1.62 1.10 1.18 1.90 1.13 1.43 0.90
L9 0.71 0.84 0.76 0.92 1.38 0.76 1.00 1.06 1.46 1.17 0.82 1.00
L10 0.71 0.89 0.92 1.00 0.92 1.12 1.55 1.46 0.61 1.13 1.09 1.20
L11 1.10 1.32 1.06 1.27 0.78 1.02
L12 1.02 1.03 1.24 1.25

1 Letters are related to groups.

We also examined other statistics, e.g., estimates of 
genotype simple effect difference, standard errors of 
simple effect difference estimates, degrees of freedom, 
as well as t-values in the t-test, between the two eBLUP 
versions (results not shown). There were differences in 
all of these statistics between the two eBLUP versions. 
This suggests that whether the heterogeneity of REV is 
accounted for by use of the eBLUP has an impact on the 
t-test about genotype simple effect in various aspects, 
which together resulted in the discrepancy of the 
number of genotype pairs with significant differences 
between the two eBLUP versions.

Discussion

In this work, the models with heterogeneous REV 
fitted the data better than their homogeneous REV 
versions for all of the considered trials according to 
both the information criterion AIC and the LRT. This 
further illustrates that the heterogeneity of REV across 
locations generally existed in multi-location trials, and 

that assuming a homogeneous REV is generally not 
realistic and makes the procedure with consideration 
of heterogeneous REV a more appropriate choice. 
Previous work (Hu et al., 2013) has showed that failing 
to take into account REV variations across locations by 
use of best linear unbiased estimation (BLUE) could 
result in an inflation or deflation of statistical Type I 
error rates for pair-wise difference test of genotype 
simple effects depending on specific locations. By 
use of the eBLUP in the present study, the ratio of the 
number of genotype pairs with significant differences 
between the two eBLUP versions was mostly not unity. 
The ratios smaller and larger than 1 indicate an inflation 
and deflation of statistical Type I error rates (Hu et al., 
2013), respectively, for pair-wise testing of genotype 
simple effects by use of the eBLUP with homogenous 
REV in comparison with that with heterogonous REV. 
The reasons for this discrepancy understandably are 
error variations across locations and the eBLUP with 
homogenous REV failing to consider this variation. 
Apart from this, the present study also showed that 
whether the heterogeneity of REV was accounted for in 
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the analysis procedures impacted the variance estimate 
of random effects, testing of the variance of G-L 
interaction effects, as well as the ranking of genotype 
simple effects by use of the eBLUP. In this context, it 
is to say that accounting for the heterogeneity of REV 
is more essential by use of the eBLUP than that by use 
of BLUE, because by the latter the heterogeneity of 
REV influences merely the pair-wise t-test of genotype 
simple effects, and by the former it influences not only 
the pair-wise t-test but also the ranking of genotype 
simple effects.

Mixed model equations developed by Henderson 
(1975) are a useful tool to analyze trials with 
heterogeneous REV (Henderson, 1975; Harville, 1976, 
1977; McLean et al., 1991; Marx & Stroup, 1993). 
Solutions to the mixed model equations give BLUE for 
fixed effects and BLUP for random effects (Searle et al., 
1992). Generally, when a REML-based mixed model 
package such as MIXED is employed, the user needs 
not worry about how to account for the heterogeneity 
of REV. This will be account for automatically on 
the basis of the mixed model with a heterogeneous 
structure for residual error effects. Besides, the mixed 
model framework also allows analysis procedures to 
be assessed using likelihood-based criteria (Wolfinger, 
1993). This study used AIC and the LRT for assessing 
the appropriateness of the analysis procedure with 
different consideration about REV. This may be 
preferable in practice to the computer-intensive cross-
validation (Piepho, 1998). Therefore, the mixed model 
should be routinely used for genotype evaluation in 
multi-location trials. 

This paper exclusively focused on the ANOVA-
type mixed model, which implies a simple variance-
covariance for G-L interaction effects. There are other 
complex structures, e.g. the factor-analytic variance-
covariance structure (Piepho, 1998). The complex 
variance-covariance, if viewed from a mixed-model 
perspective, implies heterogeneities of the variance-
covariance for G-L interaction effects. There are 
studies on the impact of the heterogeneity of variance-
covariance for G-L interaction effects on estimate of 
genotype effects (Piepho, 1994, 1998) in multi-location 
trials. An analysis procedure simultaneously accounting 
for the heterogeneity of variances of both G-L effects 
and residual error effects and a simulation study on the 
precision and efficiency of this procedure would be 
worthwhile. This will be the subject of further research.

Most of the studies on eBLUP are exclusively 
focused on the estimate of genotype simple effects. 
This paper examined the impact of the heterogeneity of 
REV not only on the ranking but also on the statistical 
hypothesis testing of genotype simple effects for multi-
location trials. The latter is especially important for 

the analysis of late-stage variety evaluation trials or 
some agronomy trials, where the number of varieties 
or treatments is fewer and hypothesis testing is more 
relevant. For example, in the trials for commercial 
release and recommendation of variety to farmers 
(e.g. on-farm trials) in China, the statistical hypothesis 
testing of genotypes is in routine use. The trials used in 
this study are only some examples of these scenarios. It 
also should be mentioned that an evaluation of genotype 
main effects usually is one of the important objectives 
in multi-location trials. The genotype main effects 
usually are considered fixed and they are evaluated 
using BLUE. For information on the impact of the 
heterogeneity of REV on the evaluation of genotype 
main effects, readers are referred to Hu et al. (2013).

Conventionally, hypothesis tests are defined for 
fixed parameters only. Just as BLUP is not estimate, 
the hypothesis test based on BLUP is not a true one 
as conventionally defined (Littell et al., 1996). 
Distribution theory associated with BLUP is not nearly 
as well-understood as it is with conventional estimable 
functions, and there are no exact methods for statistical 
inference on random effects (Littell et al., 1996). These 
notwithstanding, t-tests based on BLUP can be very 
useful in assessing variety simple effects at specific 
locations (Littell et al., 1996). 

In addition to yield comparison of genotypes, there 
is question regarding the stability of genotypes in 
many multi-location trials. By assessing the genotype 
simple effects using eBLUP, the stability issue can 
be also addressed using mixed models with random 
effects for G-L interaction (Littell et al., 1996, 2006). 
For information on the impact of the heterogeneity of 
REV on the evaluation of genotype stability, readers are 
referred to Hu et al. (2014). 

In China and as showed in this paper, genotypes 
are modeled as fixed and locations as random. In 
contrast, in Australia genotypes are generally modeled 
as random and locations as fixed (Smith et al., 2001, 
2005). Which of them, especially assuming genotypes 
as fixed or random, being reasonable, is still a 
controversial topic among statisticians. Piepho (1994) 
showed that the predictive accuracy of eBLUP based 
on a two-way ANOVA model differed only slightly 
depending on whether genotypes, environment, or 
both, were regarded as random and that the most 
important assumption was that interactions are random. 
This paper mainly investigated the properties of eBLUP 
of interaction effects. Based on this, the conclusion 
about eBLUP from this work is also applicable to 
the case as in Australia because fixed genotypes and 
random locations also imply random G-L interaction 
and the prediction of the output of random variables is 
commonly done by BLUPs.



Renhe Zhang and Xiyuan Hu

Spanish Journal of Agricultural Research March 2019 • Volume 17 • Issue 1 • e0701

8

In multi-environment trials, the presence of genotype-
environment (G-E) interaction is a constant concern 
since the performance of a variety can vary significantly 
when the G-E interaction effect is accentuated, and 
since it is difficult to evaluate the differences among 
the genotypes in all environments, making the selection 
process laborious. Thus, the G-E interaction imposes 
real difficulties to the breeder’s work; however, it is also 
an excellent opportunity to explore its positive effects 
through specific recommendations in mega-environments 
(Annicchiarico & Perenzin, 1994; Annicchiarico & 
Pia no, 2005). This paper has been restricted to the 
problem of obtaining good estimates of genotypes in 
trial environments. Clearly, the estimate or therefore 
the recommendation is only for environments under 
trial, not for ‘new’ environments. At times, the main 
interest is in estimate for new environments not 
under trial. For example, the farmer’s interest is in 
an appropriate estimate of genotypes in their own 
fields which are not exactly the same locations as 
trial, there may be G-L interaction. This problem 
was dealt with by Annicchiarico & Perenzin (1994), 
Weber & Westermann (1994), Piepho et al. (1998) 
and Annicchiarico et al. (2005). Even in presence of 
G-E interaction, it is usually required to find the stable 
high-performing genotypes across environments. In 
this case, the best we can do is that variety effects can 
be estimated across environments by considering the 
main effects across environments and treating different 
environments as a sample from a target population of 
environments. Information on this issue is in the papers 
by Atlin et al. (2000b) to find. There may be scope to 
improve predictions by making use of a stratification of 
the target population of environments into ecological 
zones according to similarity in agroclimatic conditions 
and production constraints, such as in the paper by 
Kleinknecht et al. (2013). But each zone would still 
be represented by a random sample of locations and 
estimation would focus on a genotype's zone mean 
rather than on the location mean.

It may also be worth making a clear distinction 
between locations and years because G-L interactions 
are reproducible but genotype-year interactions are not 
(Annicchiarico et al. 2000, 2006). Predicting G-L-year 
means is much less meaningful than predicting G-L 
means across years. On repeatability of G-E interactions 
and genotype recommendation for the following 
growing season, readers can refer to relevant literature 
(Annicchiarico et al., 2000, 2006; Yan & Rajcan, 2003; 
Annicchiarico & Piano, 2005; Annicchiarico, 2007; Ma 
& Stützel, 2014).

In summary, we have found heterogeneity of REV 
in all of the considered rape cultivar trials. Whether 
the REV differences across locations were accounted 

for in the analysis procedure influenced the variance 
estimate needed for the eBLUP, testing of the 
variance of G-L interaction, and hence influenced the 
evaluation of genotype simple effects by use of the 
eBLUP. In application of the eBLUP for evaluation 
of genotype simple effects, the heterogeneity of REV 
can be accounted for based on the mixed model with 
appropriate variance-covariance structure.
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