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Abstract
Aim of study: Wheat appropriate harvest date (WAHD) is an important factor in farm monitoring and harvest campaign schedule. 

Satellite remote sensing provides the possibility of continuous monitoring of large areas. In this study, we aimed to investigate the 
strength of vegetation indices (VIs) derived from Landsat-8 for generating the harvest schedule regional (HSR) map using Artificial 
Neural Network (ANN), a robust prediction tool in the agriculture sector.

Area of study: Qorveh plain, Iran.
Material and methods: During 2015 and 2016, a total of 100 plots was selected. WAHD was determined by sampling of plots and 

specifying wheat maximum yield for each plot. The strength of eight Landsat-8 derived spectral VIs (NDVI, SAVI, GreenNDVI, 
NDWI, EVI, EVI2, CVI and CIgreen) was investigated during wheat growth stages using correlation coefficients between these VIs 
and observed WAHD. The derived VIs from the required images were used as inputs of ANNs and WAHD was considered as output. 
Several ANN models were designed by combining various VIs data.

Main results: The temporal stage in agreement with dough development stage had the highest correlation with WAHD. The optimum 
model for predicting WAHD was a Multi-Layer Perceptron model including one hidden layer with ten neurons in it when the inputs 
were NDVI, NDWI, and EVI2. To evaluate the difference between measured and predicted values of ANNs, MAE, RMSE, and R2 
were calculated. For the 3-10-1 topology, the value of R2 was estimated 0.925. A HSR map was generated with RMSE of 0.86 days. 

Research highlights: Integrated satellite-derived VIs and ANNs is a novel and remarkable methodology to predict WAHD, optimize 
harvest campaign scheduling and farm management.
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Introduction

Wheat (Triticum aestivum L.) is one of the most 
important cereals grown in the world. More humans 
consume wheat as their main food more than other cereal 
grains (Pimentel & Pimentel, 2007). So, wheat plays 
a very important role in the world’s supply chain and 
food security. Therefore, maximum yield achievement 
at minimum expense is the main goal of wheat 
production. Awareness of crop growing dates, such as 
planting and harvesting dates, helps farm managers to 
reach the objectives and farm management. Harvest date 
is an important factor in field management. Planning 
the crop appropriate harvest date helps to schedule 
for harvest operation with less cost and maximize the 
profit (Abawi, 1993; Suwannachatkul et al., 2014). In 
these studies, wheat appropriate harvest date (WAHD) 
is the date in which the wheat has reached maturity, 
and its moisture content is convenient for harvest by 
a combine harvester. In Iran, the appropriate moisture 
content is in the range of 12-14 percent (Mansouri-
Rad, 2000). If wheat is harvested earlier than WAHD, 
there will be yield loss and its moisture content will 
be inappropriate for harvesting and storage (Burnett & 
Bakke, 1930; Philips & O'Callaghan, 1974; Sabir et al., 
2005). In contrast, harvesting after this date causes dry 
matter yield diminution and grain quality degradation. 
Moreover, yield loss due to weather conditions (such as 
temperature, rain, and wind), birds and insects damages 
to the matured product are disadvantages of delay in 
the harvest (BoIIand, 1984; Abawi, 1993; Farrer et al., 
2006; Sun et al., 2007). In some areas of the world, the 
majority of farmers are smallholders, and the size of 
most agricultural farms is small. Consequently, it is not 
affordable for them to own their combine harvesters, 
leading to a shortage of harvesters in the harvest time 
(Bougari et al., 2013). Lack of necessary machinery 
during harvest campaign could further delay the harvest 
date. Therefore, the wheat producers require prior 
planning for providing the combine harvester rental 
and labors which requires former notice of WAHD for 
each field. Field surveying operations are costly, time-
consuming and infeasible in large areas to determine 
harvest date (Moran & Pearce, 1997; Pinter et al., 2003). 
Some researchers (Porter & Gawith, 1999; McMaster& 
Wilhelm, 2003; Streck et al., 2003; Evers et al., 2010) 
have improved wheat phenological stages prediction 
models using photoperiod, water and vernalization 
to predict wheat maturity date. Other models such as 
STICS (Simulateur mulltidiscplinaire pour les Cultures 
Standard) and WOFOST (Worlds Food Study) have 
been developed by taking more factors into account 
such as temperature, nutrient and water stress for 
crop growth stage prediction (Boogaard et al., 1998; 

Brisson et al., 1998). Most of these models are based 
on meteorological parameters, making it difficult to 
discriminate within and between field differences in 
a dense configuration of the spatial grid (Meng et al., 
2015). Moreover, the main limitation of crop models 
is the challenges in preparing reliable input data. 
The uncertainty about the spatial repartition of soil 
properties and micro meteorological variables at farm 
scale limits these model output’s assurance (Therond 
et al., 2011).

Remote sensing provides appropriate and timely 
images of the agricultural farms. The higher revisit 
frequency capability is the merit of remote sensing 
(Atzberger, 2013) for collecting the farm information. 
In recent decades, satellite remote sensing has been 
applied for agricultural field management operations 
such as yield and biomass estimation (Panda et al., 
2010; Ren et al., 2008; Xie et al., 2009), phenological 
date prediction (Sakamoto et al., 2010; De Bernardis 
et al., 2016), and mapping of land use (Galford et 
al., 2008; Atzberger & Rembold, 2013). Vegetation 
indices (VIs), which are computational combinations 
of different spectral bands of the electromagnetic 
spectrum, simplify the analysis and processing of big 
data obtained by satellites (Govaerts et al., 1999; Viña 
et al., 2011). The strong contrast of absorption and 
scattering of the red and near-infrared bands can be 
combined into different quantitative indices to explain 
the vegetation conditions. VIs are the semi-analytical 
measurements of plant vegetation activity which ex-
plain vegetation conditions during the growth stages. 
The benefit of VIs utilization is spectral reflectance 
data enhancement, by considering the variability of 
vegetation and minimizing of the atmospheric effect, 
sun-target-sensor geometry and soil (Moulin, 1999; 
Viña et al., 2011).

The relationship between remote sensing indices and 
plant bio-physical variables is nonlinear (Haboudane 
et al., 2004). Therefore, the usage of methods creating 
a non-linear relation between independent variables 
(VIs) and dependent variables could help predict better 
the plant bio-physical behavior changes. The artificial 
neural network (ANN) is the technique, widely used 
in the field of geo/bio-physical variable detections 
(Beale et al., 2008). Application of ANN techniques 
using the VIs and also visible blue, green, red, near-
Infrared (NIR) and short wave (SWIR) regions of the 
electromagnetic spectrum have led to successful results 
for crop monitoring, crop cover, crop growth, crop 
nitrogen, crop yield and biomass estimation (Chen & 
McNairn, 2006; Karimi et al., 2006; Li et al., 2007; Xie 
et al., 2009; Prasad et al., 2012). The aim of this study 
was to generate a harvest schedule regional (HSR) 
map for predicting WAHD by using two years (2015 
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zigzag sweep path and counting the number of plants 
in each throw and averaging of plant numbers of the 
quadrates. According to the field observations, plant 
densities often were constant on each farm. 

The yield sampling was carried out by five random 
throws of the quadrate and choosing three plants in 
each throw. The plants were randomly chosen in the 
quadrate. At each sampling, fifteen plants were sampled 
for each plot, in total. By measuring the average grain 
weight of sampled plants in each plot and knowing 
plant density, the yield amount was acquired for each 
plot. The grains were used to measure the yield of fully 
matured plants. The sampling operation was conducted 
at a frequency of 2 days, from June 19 to July 11. 
Generally, eleven yield sampling observations were 
carried out for each plot in each year. The interpolation 
between yield observations was done by fitting a spline 
curve. The WAHD was considered the day of wheat 
highest yield.

Satellite image acquisition and pre-processing

Landsat-8 is the latest in a series of Landsat satellites, 
and it was launched on February 11, 2013 (http://
science.nasa.gov/missions/ldcm). The operational land 
imager (OLI) and the thermal infrared sensor (TIRS) 
are two sensors which are carried by the Landsat-8 (Roy 
et al., 2014). We used OLI sensor data in this study. The 
appropriate spatial resolution of OLI in comparison 
with the common size of agricultural farms is its 
advantage for using in agricultural studies. OLI consist 
of nine spectral bands. The spatial resolution for bands 
1 to 7 (coastal, blue, green, red, NIR, SWIR1, SWIR2) 
and band 9 (cirrus), is 30 m and for panchromatic 
band (band 8) is 15 m. A series of OLI images of the 

& 2016) VIs data derived by operational land imager 
(OLI) sensor (Landsat-8) and ANN techniques. 

Material and methods

Study site

The study was carried out in Qorveh plain in sou-
theast of Kordestan province, West of Iran (35°15´N, 
47°80´E), altitude 1900 m, with cold snowy winters 
and temperate summers (Fig. 1). The mean annual 
temperature of the site is 10.6 °C, and the average 
annual precipitation is 439 mm. The rainfed winter 
wheat is the major crop in this region, and it is sown 
in mid-October and harvested in mid-July of next year. 
The wheat-growing season is about 250 days.

Data acquisition

Field data

Field data for rainfed wheat yield measurement was 
collected during the wheat maturing stage of 2015 and 
2016 years (from June 19 to July 11). Fifty sampling 
plots were selected from fifty wheat farms, in each year. 
They were flat and homogenous with areas bigger than 
175×175 m2. The size of plots chosen was 60×60 m2 

and plots were located at the center of wheat farms. A 
GPS receiver (Garmin GPSMAP 62s, Taiwan, with a 
spatial accuracy 3 m) was used for recording the geo-
coordinates of each plot. The plant density in each plot 
was obtained in early June using a 1 m × 1 m quadrate. 
The plant density measurements were done by ten 
times random throwing of the quadrate through the 

Figure 1. Study site and sampling farm locations. Background: Landsat-8 OLI at 17 May 2016 (Row: 36, 
Path: 166).

http://science.nasa.gov/missions/ldcm
http://science.nasa.gov/missions/ldcm
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study area (path: 166, 167 & row: 35, 36) was acquired 
after wheat dormancy stage with no cloud or less than 
10% amount of cloud in each year. The images were 
acquired in 2015 on April 4, April 20, April 29, May 
6, May 31, June 7, June 16 and June 23 which there 
were coincided with tillering, stem extension (20th & 
29th of April), booting, heading, dough development, 
physiological maturity and harvest ripe stages of wheat, 
respectively. Also, in 2016 the images on April 6, April 
22, May 1, May 8, May 17, June 9, June 18 and June 
25 were acquired which there were coincided with 
tillering, stem extension (22th of April & 1st of May), 
booting, heading, dough development, physiological 
maturity and harvest ripe stages of wheat, respectively.

The pre-processing of images was performed in 
ENVI 5.1 software. Since the OLI images had been 
corrected geometrically, we just did the second geo-
referencing operation to ensure the correct location of 
terrain. The ground control points derived from 1:25000 
topographic maps were applied for geometric correction. 
The geo-correction error less than 0.5 pixel (15 m) 
was attained. The nearest neighbor method and linear 
polynomial geometric model were used. Atmospheric 
corrections were performed using MODTRAN 4 model 
in FLAASH (Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercubes) module in the ENVI 5.1. 
The parameters used in the FLAASH were adjusted 
based on scene center location, sensor type, sensor 
altitude, ground elevation, pixel size, information about 
sensor flight date and weather conditions on the image 
acquisition date. The output of the FLAASH package 
was the surface reflectance of OLI images.

Extraction of vegetation indices

There are some studies which have suggested double 
or multi-band spectral indices to estimate bio-physical 
changes of crops (Garroutte et al., 2016; Li et al., 
2016). This study included eight widely used VIs to 

investigate the strength of VIs during wheat gro wing 
stages. These indices included: NDVI (normalized 
difference vegetation index), SAVI (soil adjusted 
vegetation index), EVI (enhanced vegetation index), 
EVI2 (2 bands enhanced vegetation index), NDWI 
(normalized difference water index), GreenNDVI 
(green normalized difference vegetation index), CVI 
(chlorophyll vegetation index) and CIgreen (green chlo-
rophyll index). The VIs mentioned above can be 
classified in three groups based on their sensitivity 
to green biomass (NDVI, SAVI, EVI, EVI2), the 
liquid water content of vegetation (NDWI) and leaf 
chlorophyll (CVI, GreenNDVI, and CIgreen). Table 1 
represents the formula of these indices. 

Determining the best temporal stage for WAHD 
prediction

In each year, to determine the best temporal and 
phenological stage for predicting WAHD, correlation 
coefficients (R) between VIs and WAHD were 
calculated for different images acquired during the 
wheat growth phases. The date with the highest R 
values was recognized as the best temporal stage for 
WAHD prediction.

The artificial neural network model

The ANNs are flexible mathematical models that 
accomplish a computational simulation based on 
the behavior of human brain neurons. The ANN is a 
non-linear machine learning algorithm with a high 
potential for modeling and prediction (Foody, 2004). 
It is composed of artificial neuron groups which are 
interconnected with weighted links and could create 
a strong relation between inputs and outputs using a 
learning approach (Omer et al., 2016). The network 
architecture is the first step for developing an ANN 
model that is determined by artificial neurons and layers. 

Table 1. Formula for several spectral vegetation indices.
Vegetation 

index Formula Reference

NDVI NDVI = (ρNIR - ρRed)/(ρNIR + ρRed) Rouse et al., 1974
SAVI SAVI = (ρNIR - ρRed)(1 + L)/(ρNIR + ρRed + L) Huete, 1988
EVI EVI = 2.5 (ρNIR - ρRed)/(ρNIR + 6ρRed - 7.5ρBlue + 1) Huete et al., 1997
EVI2 EVI2 = 2.5 (ρNIR - ρRed)/(ρNIR + 2.4ρRed + 1) Jiang et al., 2008
NDWI NDWI = (ρNIR - ρSWIR)/(ρNIR + ρSWIR) Gao, 1996
CVI CVI = (ρNIR/ρGreen) * (ρRed/ρGreen) Vincini et al., 2007
GreenNDVI GreenNDVI = (ρNIR - ρGreen)/(ρNIR + ρGreen) Gitelson & Merzlyak, 1998
CIgreen CIGreen = (ρNIR/ρGreen) - 1 Gitelson et al., 2003

ρBlue, ρGreen, ρRed, ρNIR and ρSWIR are spectral reflectance of red, green, blue, near infrared and short wave infrared bands 
which are in accordance with bands 2, 3, 4, 5 and 6 for OLI sensor, respectively.
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A usual ANN consists of an input layer, an output layer, 
and several hidden layers. Also, each layer contains 
some neurons and activation functions. In this study, we 
used a Multi-layer perceptron (MLP) network which 
is extensively used type of ANNs in the community of 
remote sensing. The gradient descent with momentum 
(GDM) algorithm was used to train the network. For 
this algorithm, the weights are updated during the nth 
training iteration as follows (Omid et al., 2009):

 (1)

Additionally, the set of weights are given by: 

(2)

where  is the weight between the jth neuron of the 
upper layer and the ith neuron of the lower layer, δj is 
the error of jth neuron, oi is the output value of the ith 

neuron of the previous layer, η is the learning rate and 
α is the momentum term. , is the gradient vector 
affiliated with the weights.

ANNs structure

To consider the efficacy of inputs (Green biomass 
sensitive, chlorophyll sensitive and water content 
sensitive VIs) on WAHD prediction, eight MLP type 
models were designed. Fig. 2 shows a typical scheme 
of an MLP model which comprises the input layer, the 
hidden layer, and the output layer. Different models 
were designed using various combination of VIs as the 
neurons in the input layer (ANN-1 to ANN-8). The input 
variables for ANN-1 to ANN-3 were green biomass 

sensitive VIs, chlorophyll sensitive VIs and water 
content sensitive VIs, respectively. The input variables 
for ANN-4 were EVI2 (green biomass sensitive), NDWI 
(water content sensitive) and GreenNDVI (chlorophyll 
sensitive) that each of them had the highest correlation 
with the observed WAHD in their groups. The input 
variables for ANN-5 was a combination of the NDVI and 
EVI2 (green biomass sensitive) and NDWI (water content 
sensitive). ANN-6 was a combination of green biomass 
sensitive VIs (NDVI, SAVI, EVI2) and chlorophyll 
sensitive VI (GreenNDVI). The input variables for 
ANN-7 were the combination of chlorophyll sensitive 
and water content sensitive VIs. The input variables for 
ANN-8 were the combination of green biomass sensitive 
and water content sensitive VIs (Table 2).

For determining the optimum number of hidden layer 
neurons, the minimum value of RMSE was considered. 
In this study, the used activation function was hyperbolic 
tangent (TANH) for hidden and output layers. Also, the 
values of α=0.7 and η=0.1 were used. 

The data set on 100 VIs for predicting WAHD was 
split into three parts: 70% of VIs for training, 15% for 
cross-validation and 15% for testing data. After sufficient 
training, the weights of the network were adapted and 
applied for validation to determine the model overall 
performance. 

ANN model performance and validation

The performance of eight ANN constructed model 
using a different number of VIs was evaluated by statisti-
cal parameters including coefficient of determination 
for prediction (test data) ( ), mean absolute error for 
prediction (MAEP), and the root mean square error for 

Input Layer

NDVI

SAVI

EVI

EVI2

CVI

NDWI

WAHD

Hidden Layer OutputLayer

Figure 2. Scheme of the multi-layer perceptron (MLP) model structure used for 
wheat appropriate harvest date (WAHD).
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prediction (RMSEP). The values of , MAEP, and 
RMSEP were calculated using equations 3, 4 and 5, 
respectively. 

 
 

where Ymea,i is the measured WAHD, Yest,i is the esti-
mated WAHD, Ymea,i is the mean of measured values 
of WAHD, Yest,i is the mean of estimated values of 
WAHD, and N is the number of samples. The higher 
values for  and lower values of MAEP and RMSEp re-
present further precision and accuracy of the model. All 
calculations for ANN models were implemented using 
custom-written scripts of MATLAB R2015a software.

Harvest schedule regional (HSR) map 

The predicted data of the best MLP model (in terms 
of precision and accuracy) was used for generating the 

HSR map using ArcGIS 10 software. Furthermore, the 
WAHD map was provided using the data of the test set. 
Moreover, both of the generated maps were compared 
with maps of measured data.

Results 

The best temporal stage for WAHD prediction

Table 3 and Table 4 show the variation of R-values 
between VIs and observed WAHD in 2015 and 2016, 
respectively. The R-values were calculated to specify 
which temporal stage and VIs are appropriate for 
WAHD prediction. Also, for better comprehend the 
results in Tables 3 and 4, the temporal variations of 
R-values were presented in Fig. 3. Most of R-values had 
an ascendant trend before Jun 7, 2015 (Fig. 3a), and 
Jun 9, 2016 (Fig. 3b). However, a decline was observed 
in R-values after these dates. Based on the results the 
days of early of June were the best temporal phase for 
WAHD prediction which was coincided with dough 
development stage of wheat.

In 2015, the maximum R-values for NDVI, SAVI, 
EVI, EVI2, GreenNDVI, CIgreen, and NDWI were 0.729, 
0.698, 0.744, 0.758, 0.594, 0.558 and 0.753 respectively 

Table 2. Combination of various VIs data as inputs of estimated ANN models.
Prediction 

model NDVI SAVI EVI EVI2 GreenNDVI CVI CIgreen NDWI

ANN-1 ■ ■ ■ ■
ANN-2 ■ ■ ■
ANN-3 ■
ANN-4 ■ ■ ■
ANN-5 ■ ■ ■
ANN-6 ■ ■ ■ ■ ■
ANN-7 ■ ■ ■ ■
ANN-8 ■ ■ ■ ■ ■

Table 3. The R values between WAHD and various VIs at different dates in 2015. The maximum 
R values are in bold type.

Vis 2015 Apr 4 Apr 20 Apr 29 May 6 May 31 Jun 7 Jun 16 Jun 23
NDVI 0.341 0.376 0.377 0.511 0.625 0.729 0.564 0.412
SAVI 0.298 0.401 0.392 0.456 0.607 0.698 0.618 0.441
EVI 0.376 0.369 0.395 0.524 0.664 0.744 0.628 0.514
EVI2 0.345 0.384 0.389 0.557 0.668 0.758 0.632 0.513
GreenNDVI 0.179 0.241 0.298 0.439 0.459 0.594 0.466 0.404
CVI 0.197 0.310 0.309 0.329 0.435 0.423 0.563 0.437
CIgreen 0.067 0.183 0.138 0.236 0.401 0.558 0.444 0.351
NDWI 0.175 0.208 0.257 0.379 0.627 0.753 0.608 0.356

(5)

(4)

(3)

˗
˗
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Table 4. The R values between WAHD and various VIs at different dates in 2016. The maximum 
R values are in bold type.

VIs 2016 Apr 6 Apr 22 May 1 May 8 May 17 Jun 9 Jun 18 Jun 25
NDVI 0.334 0.412 0.468 0.514 0.592 0.698 0.501 0.357
SAVI 0.330 0.361 0.410 0.478 0.517 0.686 0.551 0.473
EVI 0.409 0.326 0.319 0.480 0.597 0.709 0.506 0.467
EVI2 0.360 0.371 0.410 0.532 0.605 0.763 0.607 0.522
GreenNDVI 0.216 0.221 0.249 0.419 0.425 0.560 0.582 0.455
CVI 0.165 0.257 0.314 0.380 0.444 0.530 0.554 0.541
CIgreen 0.114 0.169 0.278 0.312 0.335 0.482 0.541 0.480
NDWI 0.203 0.286 0.301 0.418 0.601 0.747 0.568 0.455

Figure 3. Temporal variations of R values between WAHD and VIs (a) in 2015 and (b) in 2016.
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that were obtained on Jun 7, but the R-value of CVI 
(0.563) was maximum on Jun 16 (Table 3).

As shown in Table 4, the maximum R-values were 
achieved on Jun 9 for NDVI (0.698), SAVI (0.686), 
EVI (0.709), EVI2 (0.763), and NDWI (0.747) in 2016. 
Additionally, the maximum of R-values for GreenNDVI, 
CVI, and CIgreen were 0.582, 0.554 and 0.541 on Jun 
18. Considering the R-value as an indicator to assess 
the ability of VIs to estimate WAHD at wheat different 
growth stages, the June 7, 2015, and June 9, 2016, was 
selected for prediction.

Evaluation of ANN models

The results of designed models and the , MAEP, 
and RMSEP values for these models are summarized 
in Table 5. For these models, , MAEP and RMSEP 
values ranged from 0.611 to 0.925, 0.70 to 1.51, and 
0.87 to 2.00, respectively. From the designed and trained 
networks, the ANN-5 presented better results than other 
networks. Therefore, the ANN-5 was selected as the 
best estimation model for WAHD (eq. 6): 

(6)

where WAHDANN-5 is the predicted value of the WAHD 
using the ANN-5, and f(neti) is tanh (neti). Hence, 
the (1- 10-3) - MLP network, consists of three VIs as 
input variables (EVI2, NDWI, NDVI), ten neurons in 
the hidden layer and a single output variable (WAHD) 
was selected as the optimum network. The values of 

, MAEP, and RMSEP for this topology were obtained 
0.925 (Fig. 4b), 0.70 and 0.87, respectively. Fig. 4a 
shows the comparison between predicted WAHD values 
(test data) with the measured data. It could be observed 
that the trends were similar and superimposed over the 
others in some parts. The second model that had good 

performance for WAHD estimation was ANN-8 (
=0.882; MAEP=1.05; RMSEP=1.11). Three VIs (NDVI, 
EVI2, and NDWI) were common parameters for both 
models ANN-5 and ANN-8. In other words, NDVI, 
EVI2, and NDWI can predict WAHD better than other 
indices. 

ANN-2 ( =0.706; MAEP=1.51; RMSEP=2.00) 
which included GreenNDVI, CVI, and CIgreen had low 
accuracy for WAHD modeling. Therefore, it can be 
concluded that GreenNDVI, CVI, and CIgreen are not 
good indicators for WAHD prediction. In addition, 
ANN-3 model with individual input (NDWI) did not 
have high accuracy estimation for WAHD ( =0.611; 
MAEP=1.41; RMSEP=1.86). But, it can be seen in 
ANN-7 model that adding NDWI to GreenNDVI, CVI, 
CIgreen VIs (ANN-2) led to better estimations for WAHD 
prediction ( =0.759; MAEP=1.22; RMSEP=1.49). 
Besides, by adding the NDWI to vegetation indices of 
ANN-1, the accuracy of model improved ANN-8 (Table 
5). In total, it is concluded that NDWI composition with 
other indicators could improve the forecast of WAHD.

HSR map

The HSR map using all data is shown in Fig. 5b, where 
ANN-5 model has been used for estimation as respects 
it had the best prediction accuracy (as explained in 
detail earlier). Also, the comparison between measured 
and estimated HSR maps is presented in Fig. 5, where 
the ANN-5 shows to have made good estimations of 
WAHD. Also, the trend of harvesting dates for different 
farms is the same in the two maps (Fig. 5). 

As shown in estimated and measured maps (Fig. 5), 
the WAHD of northern regions is after the southern 
regions. Therefore, the harvest operation should start 
from the farms in southeast regions in the maps and 
completed in northwest farms. The differences in 
sowing dates, topographic variations, and the angle of 
sunlight, temperature, precipitation and soil moisture 

Table 5. The value of R2 and RMSE for different simulations between measured and estimated 
ANN-models. ANN-5 (bolded) was selected as the best estimation model.

RMSEPMAEPRBest structure 
of MLPPrediction model

1.121.060.8571-10-4ANN-1 (NDVI, SAVI, EVI, EVI2)
2.001.510.7061-13-3ANN-2 (CVI, GreenNDVI, CIgreen)
1.861.480.6111-8-1ANN-3 (NDWI)
1.080.990.8441-12-3ANN-4 (EVI2, NDWI, GreenNDVI)
0.870.700.9251-10-3ANN-5 (EVI2, NDWI, NDVI)
1.381.130.8431-16-5ANN-6 (NDVI, EVI2, SAVI, GreenNDVI, NDWI)
1.491.220.7591-14-4ANN-7 ( GreenNDVI, CVI, CIgreen, NDWI)
1.111.050.8821-13-5ANN-8 (NDVI, SAVI, EVI, EVI2, NDWI)



Harvest chronological planning using a method based on satellite-derived VIs and ANNs 

Spanish Journal of Agricultural Research September 2019 • Volume 17 • Issue 3 • e0206

9

Figure 4. (a) Estimated (ANN-5) and measured WAHD on testing data. (b) Measured vs. estimated WAHD values 
(ANN5).

Figure 5. Comparison between measured (a) and estimated (using ANN-5) (b) HSR maps for All data.

amount are the reasons of WAHD variation among 
these farms. 

The estimated (using test data of ANN-5) and 
measured WAHD maps are shown in Fig. 6a and 6b, 
respectively. As seen in Fig. 6, the ANN-5 could provide 
very good predictions of WAHD. However, there 
were few differences between measured and estimated 
WAHD, and one disagreement was labeled with a black 
circle in Fig. 6. Therefore, it can be concluded that 
the MLP model with 1-10-3 topology had very good 
performance for harvest date predictions.

Discussion

In this study, we present a method for predicting 
WAHD, based on Landsat-8 derived VIs and ANNs 
to optimize harvest campaign scheduling and farm 
management. The utilized approach is based on the 
spectral variation of wheat canopy during phenological 

stages. The VIs, using the combination of different 
spectral bands, could explain the vegetation conditions 
during wheat growth stages. The VIs used in this study 
were classified in three groups based on their sensitivity 
to green biomass (NDVI, SAVI, EVI, EVI2), the 
liquid water content of vegetation (NDWI) and leaf 
chlorophyll (CVI, GreenNDVI, and CIgreen). 

In the present study, application of ANNs, as non-
linear modeling techniques, had excellent performance 
for estimating WAHD. The performance and accuracy 
of MLP models to WAHD estimation was due to the key 
features of these type models: (i) the intrinsic abilities 
of ANNs, such as learning, cross-validating and flexible 
processing; (ii) generating non-linear patterns between 
inputs and outputs which lead to accurate estimations 
of complex and dynamic data; and (iii) the VIs included 
intensive data which correlate non-linearly with spatial 
based WAHD. Therefore, considering the nature of VIs 
data, the ANN modeling techniques are a very good 
substitute for linear statistical methods. As reported 
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by Xie et al. (2009), the ANN models could provide 
an accurate estimation (R2=0.817 and RMSE=0.4236) 
for predicting above ground grassland biomass based 
on Landsat ETM+. Also, other researches which have 
been done using ANN techniques and VIs, suggest that 
utilizing of ANNs in remote sensing applications, has 
been very successful in the agriculture sector (Li et al., 
2007; Fortin et al., 2010; Pantazi et al., 2016).

The ANN-5 had the best estimation of WAHD. The 
input variables of this model were EVI2, NDWI, and 
NDVI. EVI2 could be recognized as the best index 
for WAHD prediction because of its high R value with 
WAHD. EVI2 consists of NIR and red bands; strong 
contrast of leaf scattering in the NIR wavelength and 
chlorophyll absorption in the red wavelength, makes 
EVI2 very robust to explain the vegetation conditions. 
EVI2 not only has an improved sensitivity over high 
biomass, in comparison with the SAVI, but also 
minimizes soil influences (Jin et al., 2016). EVI2 can 
capture subtle changes in vegetation structure and 
condition, especially to discriminate between leaf area 
index surface and greenness for vegetation with various 
soil background reflectances (Rocha & Shaver, 2009). 
Therefore, EVI2 is a suitable indicator for WAHD 
prediction. Results achieved by Bolton & Friedl (2013) 
as well as by Wang et al. (2015), proved that EVI2 
has a high ability to predict maize yield and estimate 
rice phenology, respectively. NDWI is sensitive to the 
total amounts of the liquid water content of vegetation 
canopies (Gao, 1996). The water content of wheat 
canopy varies during wheat growth stages, and NDWI 
could present these water content variations. As reported 
by Liu et al. (2006) and Bao et al. (2008), NDWI had 
a good correlation with wheat biophysical parameters 
and yield. Although in the present study NDWI did 
not have a good ability to WAHD estimation alone 
(ANN-3 model; =0.611; MAEP=1.41; RMSEP=1.86), 

adding NDWI to other indices improved the estimation 
power of models (ANN-2 vs. ANN-7 and ANN1 vs. 
ANN8). NDVI is the most practical indicator which 
is widely used in vegetation monitoring. According 
to Suwannachatkul et al. (2014), the use of NDVI 
to estimate rice harvest date resulted in acceptable 
accuracy (about eight days). NDVI was the only 
indicator used for predicting. The results of the current 
study showed that the combination of VIs for WAHD 
prediction improved the estimation accuracy (about 
one day). This was also confirmed in the present 
study, where green biomass sensitive VIs (NDVI, 
SAVI, EVI, EVI2) could estimate WAHD better than 
chlorophyll sensitive VIs (CVI, GreenNDVI, CI green) 
by comparing models ANN-1 and ANN-2. Moreover, 
ANN-6 and ANN-7 represent this issue. Therefore, it 
is suggested that biomass-sensitive VIs be used in the 
harvesting date prediction researches.

The methodology applied in this paper is straightway 
and just needs satellite imagery bands to predict 
WAHD. The substantial advantage of the used method 
is its relative simplicity which makes it suitable for 
regional scale applications. The present method can 
be extended to other regions of the world. Also, other 
satellite sensors can be applied with this method. 
Moreover, the current model (ANN-5) may be helpful 
to regions with similar climate, where the sowing and 
harvesting dates are similar to the study region. The 
main limitation of this method is the accessibility of 
valid satellite imagery. The cloudy weather disrupts 
access to satellite images. A solution to this problem is 
the simultaneous use of several satellite images (Shang 
et al., 2014; Wang et al., 2015).

The current study presents a preliminary investigation 
of WAHD using satellite imagery. This method can be 
applied to other crops considering the crop conditions. 
Also, the combination of satellite remote sensing 

Figure 6. Comparison between measured (a) and estimated (using ANN-5) (b) WAHD maps for Test data.
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models, crop models, and meteorological statistical 
models will improve predictions.
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