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Abstract
Rice tillering is a crucial stage for yield formation. Deep understanding of the relationship between tillering dynamics and yield 

formation in a particular agrosystem is crucial to boost rice productivity. Research on rice tillering is mainly focused on tropical 
agrosystems whereas less is done in the Mediterranean, with direct water-seeding and Japonica cultivars. This study aims at char-
acterizing tillering dynamics and identifying the main explanatory tillering traits of yield in a Mediterranean rice agrosystem, Ebro 
Delta (Northern Spain). A temperate Japonica cultivar grown in Spain, Gleva, was utilized. Plants and tillers were tagged to assess 
emergence and fertility ratios and grain yield; while changes in tillering number over time, yield and yield components for unit area 
were measured. Plant and tillering dynamics in the Ebro Delta rice fields can be accurately predicted through equations herein 
provided, which are based either on thermal time or leaf development. Plants grown under regional standard agricultural practices 
produced up to eight primary tillers of which two or three become productive. Maximum tiller number was the main explanatory 
variable of yield while high-yielding tillers within a plant are located on nodes with the highest emergence ratios and, after the main 
stem, they are the major contributors to yield. The decisive role of tiller development on yield along with the predictability of tiller 
dynamics raises options to optimize grain yield through tillering modulation. In this sense, results from this study suggests the 
promotion of early tillering followed by inhibition of late tillering as a strategy of tillering regulation. 
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Introduction

Rice (Oryza sativa L.) is the staple food of more than 
half of the world’s population. The rice growing area in 
Europe and in Mediterranean areas is about 1,300,000 
ha, notably located in environmentally protected wetland 
ecosystems playing an important role in the maintenance 
of ecological equilibrium and biodiversity. In Spain, rice 
fields in the Mediterranean coast, such as the Ebro Delta 
and Valencia, are highly relevant not only environmen-
tally but also socioeconomically being the main eco-
nomic driver in these wetland agrosystems.

Tillering is a crucial phenological phase in rice, as 
it greatly influences grain yield (Gendua et al., 2009) 

through the determination of panicle density (Wu et al., 
1998), and formation of the crop canopy, and therefore 
it is the main source and sink of carbohydrates (Ham-
mer et al., 1987) and dry matter accumulation (Wu 
et al., 1998). 

Tillers are developed from axillary buds of leaves 
so that those arising from leaves on main stem are 
called primary tillers; secondary arises from primary 
tillers and so on for each category. Tiller hierarchy is 
defined by category and order, the last being the topo-
logical position of the node along the stem axis 
(Counce et al., 1996).

Tillering dynamics is defined as the changes of 
tiller number per plant or per unit area over the growth 
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north Pacific (Agrama et al., 2010), temperate Ja-
ponica cultivars are the most cultivated. In most of the 
European countries rice is grown in Mediterranean 
climate, with a dry and warm summer and mild tem-
peratures during spring and late summer and autumn, 
coinciding with crop emergence and maturity, respec-
tively (Takaya et al., 1974). 

In general, Japonica cultivars have lower optimum 
temperature whereas Indica subespecies are better 
adapted to higher temperatures and submerged condi-
tions (Yoshida, 1981). As a consequence, agronomic 
performance differs from both rice types, having Ja-
ponica varieties shorter cycle and lower tillering capac-
ity than Indica type. To the best of our knowledge, little 
has been done in tillering pattern in direct-seeded rice 
in European rice systems, particularly in the Mediter-
ranean climate. The objectives of the present study were 
to characterize the tillering dynamics of a temperate 
Japonica rice cultivar, Gleva, widely grown in Ebro 
Delta and Valencia, which is representative of the vari-
etal profile grown in Eastern coast rice fields in Spain, 
and to relate it with yield formation in a typical Mediter-
ranean rice crop system. Such knowledge will provide 
a better understanding of yield formation in this particu-
lar agro-environment and it will represent a first step 
towards the definition of strategies to optimize tillering 
dynamics in order to enhance crop productivity. 

Material and methods

Three field experiments were carried out from 2007 
to 2009 in Amposta (Ebro Delta region, North-eastern 
Spain; 40.7°N 0.6°E). Experiments were arranged ac-
cording to a randomized block design with three rep-
lications and plots of 50 m2. Cultivar Gleva, a Japon-
ica-type rice cultivar representative of the varietal 
profile grown in Eastern coast rice fields in Spain, with 
medium grain size and a growth cycle of about 120 
days from sowing to maturity, widely grown in the Ebro 
Delta area and Valencia, was used in the experiments. 
Meteorological data were obtained from a station lo-
cated close to field experiments. 

Plots were dry-land prepared by harrowing and laser-
levelling. A total of 120 kg N/ha (according to the current 
environmental legislation at that moment) was applied 
in three applications of 40 kg N/ha each: one at pre-
sowing (urea), the second at mid-tillering and the third 
at panicle initiation (ammonium sulphate). P-K fertiliza-
tion was made to avoid deficiencies of these elements: 
45 kg/ha of K2O and of P2O5 was applied as at pre-sow-
ing. Pre-emergence herbicide (Oxadiazon, 25%) was used 
for grasses (Echinocloa sp.) and red rice (Oryza sativa 
sp.) control and hand-weeding was conducted when 

cycle: stem number increases up to maximum tiller 
stage from which tiller abortion processes are launched 
until the achievement of the eventual number of pro-
ductive tillers. Tillering pattern at a plant level deter-
mines plant structure and it is assessed by ratios of 
emerged and productive tillers across nodal positions 
(Jaffuel & Dauzat, 2005).

Regulation of tiller dynamics, considering both tim-
ing of emergence and number of tillers, has implica-
tions on yield formation, hence it provides an oppor-
tunity to optimize grain yield. Temporal pattern is also 
relevant for grain yield (Miller et al., 1991) as earlier 
tiller emergence is advantageous for resource capture 
(Lafarge et al., 2002) whereas late tillers may cause 
significant waste of assimilates and thus limit overall 
yield plant potential (Mohapatra & Kariali, 2008). On 
the other hand, excessive tillering induces tiller abor-
tion, low seed set and small panicle size, leading to 
reduced grain yield (Peng et al., 1998) as opposed to 
low tillering which may lead to suboptimal tiller and 
panicle densities and eventually, reduced grain yield. 
At a plant scale, yield is distributed across panicle-
bearing culms whose final number results from tillering 
dynamics and subsequent trade-offs between tiller 
emergence and senescence. Plant tillering ability (Otte-
son et al., 2008), as well as topological position of 
tillers (Jaffuel & Dauzat, 2005), affect plant yield po-
tential and tiller contribution to plant yield. Thus, 
knowledge of plant structure and dynamics is critical 
in understanding yield formation in rice. 

Several studies on tiller dynamics have been carried 
out in cereals, such as barley (Lafarge, 2000), wheat 
(Otteson et al., 2008), sorghum (Lafarge & Hammer, 
2002b) and rice (Jaffuel & Dauzat, 2005). In rice, en-
vironmental (De Datta, 1981; Yoshida, 1981), geno-
typic (Kim & Vergara, 1990; Alam et al., 2009; Gendua 
et al,. 2009) and agronomic variables such as nutrient 
supply (Otteson et al., 2008), water management (El-
hani et al., 2007; Ohe et al., 2010), plant density (Wu 
et al., 1998; Ottis & Talbert, 2005) and planting meth-
od (Kariali et al., 2008; Thakur et al., 2009) influence 
the development of emergent tillers and the subsequent 
plant yield distribution among panicles. Such plastic-
ity provides a promising tool to maximize grain yield 
through regulation of crop growth although it needs to 
be based on predictability of tiller dynamics. However, 
the influence of such a wide range of environmental 
and agronomic factors on rice tillering limits the ap-
plicability of this knowledge in a particular agri-envi-
ronment. Most of studies on tillering dynamics and 
yield components are based on transplanted rice in 
tropical areas, where Indica type varieties are pre-
dominant. Nevertheless, in the European rice producing 
countries (Aldo, 2007; Agrama et al., 2010) and the 
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using a blower (Oregon Seed Blower) and then, spike-
let fertility (seed-set) was calculated by dividing weight 
of filled grains by weight of total (filled and empty 
grains). Thousand-grain weight was calculated from 
the mean weight of 200-grain samples whereas grain 
number per panicle was calculated by dividing average 
of panicle grain weight (calculated from 30 panicles 
randomly sampled) by thousand-grain weight. 

Crop phenology was monitored. Seedling emergence 
and establishment was defined when tagged plants were 
at 1.5 and 4.0 Haun leaf stage, respectively; heading, 
when 50% of panicles were at least partially exserted 
from the boot; and maturity, when more than 80% of 
grains were yellow. To determine panicle initiation, 5 
main stems were randomly sampled every two days from 
50 days after sowing (based on previous data on the 
cultivar) and dissected in the laboratory. Panicle initiation 
stage was defined when panicle length was 1 to 2 mm.

Statistical analyses

Tillering dynamics was studied at different unit and 
time scales: tiller dynamics per plant was plotted 
against both thermal time and leaf development where-
as tiller dynamics per unit area was plotted only against 
thermal time. Thermal time, expressed as accumulated 
growing degree days (ºCd) from seedling emergence, 
was calculated by summing daily degree days, accord-
ing to McMaster et al. (2003):

	 GDD = ∑ [(Tmax+Tmin)/2] – Tb	 [1]

where GDD is the growing degree days and Tmax and 
Tmin are maximum and minimum daily temperatures, 
respectively, and Tb is base temperature. Base tem-
perature used was 8 ºC (Yin & Kropff, 1996). 

Observed data of each year and replication was curve 
fitted using Software Table Curve 2D v5. The goodness 
of fit of the function to observed data was evaluated 
using the coefficient of determination (R2). Tiller dy-
namics per plant was plotted against both thermal time 
(TT) and leaf development: the former was fitted by a 
linear regression (Eq. [2]) whereas the latest to a loga-
rithmic equation (Eq. [3]).

	 TiN=a+b*TT	 [2]
	 Ln (TiN) = a+b*LN+c*LN2	 [3]

where TiN is tiller number/plant; TT is thermal time; 
and LN, leaf number on main stem.

Tiller dynamics per m2 was plotted against thermal 
time and fitted by non-linear regression to the follow-
ing rational equation (Eq. [4]): 

necessary during the crop growth. Other crop protection 
chemicals were used to minimize pest and diseases ac-
cording to pest infestation in field and to European Union 
laws for phytosanitary substances regulation. 

Pre-germinated seeds were sown at rates of 450 vi-
able seeds/m2 the 16th, 18th and 9th of May in 2007, 2008 
and 2009, respectively. Plots were continuously flood-
ed, with increasing depth of water layer from 2 to 10 
cm according to increase in plant height. Plots were 
harvested during the last week of September.

Plant measurement and data collection

Tiller dynamics, yield and yield-related traits were 
determined at both plant and unit area levels. Accord-
ingly, two subplots were delimited in each plot which 
provided two data sets. 

Plant tiller dynamics and plant yield were recorded in 
a 0.20 m2 subarea delimited during seedling establishment 
in which ten plants were tagged. Tiller emergence and 
leaf stage from each plant were monitored every three 
days during active tillering stage and weekly from the 
maximum tillering stage until heading time. Tillers from 
main stem (primary tillers) were identified according to 
tiller position which is defined by the leaf number from 
which it is developed. Leaf stage was determined using 
the Haun scale (Haun, 1973). At maturity, the ten tagged-
plants were hand-harvested, oven-dried at 80°C until 
constant weight and then each panicle gently threshed by 
hand. Yield-related traits were measured at a tiller-posi-
tion scale: grain weight, total and filled grain number per 
panicle was recorded while panicle fertility was calcu-
lated as the ratio of filled grain number over total grain 
number. Tiller pattern per plant was assessed by ratios of 
tiller emergence and tiller fertility which were calculated 
as the number of total emerged tillers and fertile tillers, 
respectively, in each tiller position over total number of 
plants. Tiller dynamics per unit area was recorded in a 
0.13 m2 subarea, in which number of tillers was counted 
every three days during active tillering stage, weekly 
from maximum tillering stage to heading and at matu-
rity. Tiller efficiency was calculated as number of produc-
tive tillers divided by the maximum tiller number. 

Grain yield and yield components per unit area were 
determined. Plant and panicle density per m2 in each 
plot were determined by counting plant and panicle 
number in a 1-m2 subarea at 4th leaf stage and at head-
ing, respectively. A 6-m2 area in each plot was hand 
harvested at maturity and threshed. Separate grains in 
each plot were weighted and put in individual bags. A 
100-g sample of each plot was oven dried to determine 
humidity at harvest time and then yield was corrected 
to 14% humidity. Unfilled grains were separated by 
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	 TiNM2= (a+c*TT0.5+e*TT)/ (1+b*TT0.5)	 [4]

where TiNM2 is tiller number/m2.
Variables with biological meaning were calculated 

from each equation and then used for tillering charac-
terization: ymax as maximum tiller number; xmax as tim-
ing of maximum tillering stage; maximum and mini-
mum first derivative of the function as maximum rate 
of tiller emergence and tiller mortality, respectively; x 
value for maximum and minimum first derivative as 
leaf stage when maximum rate of tiller emergence or 
tiller mortality occurs, respectively.

Adjustment of emergence time of primary tillers at 
a plant scale was done by regressing emergence of each 
primary tiller against emergence time. The slope of the 
linear function was used to estimate the rate of emer-
gence of primary tillers. 

Analyses of variance (ANOVA) were conducted to 
test the effect of year on tillering traits derived from 
curve fitting, yield and yield components. 

Pearson correlation coefficients were determined for 
the mean values of the replications using yield, yield 
components and tillering traits variables. Stepwise 
regression analyses were carried out with grain yield 
as dependent variable and plant density, yield compo-
nents (panicle density, grain number per panicle, 
panicle fertility and one thousand grain weight) and 
maximum tiller number as independent variables.

Panicle yield across tillers within a plant are not 
independent of each other and consequently it was 
analysed as repeated measurements (in space) using a 
mixed model (Piepho et al., 2004) and the restricted 

maximum likelihood (REML) for the estimation of 
variance components and the residual variances. Tiller 
order was used as the repeated factor. The effect of 
years as a fixed factor was analysed for each variable 
and tested using the Type III estimable functions. The 
least squared means were computed with the LSMeans 
statement and the Tukey test was used for the multiple 
comparison adjustment. When the fixed effect of the 
interaction Year × Treatment was significant, the data 
were treated separated by year. 

The statistical program used for ANOVA, analyses 
of repeated measures with mixed model, correlation 
analyses and stepwise regression was SAS 9.2 (SAS 
Institute Inc., 2008). 

Results

Reproductive and maturity phenological stages oc-
curred at following timings in 2007, 2008 and 2009, 
respectively: panicle initiation at 809, 746 and 726 
GDD from seedling emergence (1.5 Haun leaf stage); 
heading at 976, 1076 and 1059 GDD; and maturity at 
1595, 1684 and 1637 GDD.

Tillering dynamics per plant and its 
synchrony with leaf emergence

Rice plants were mainly composed by primary till-
ers, i.e. tillers emerging from axillary buds on main 
stem (MS), and few secondary tillers were developed 

Figure 1. Linear regression model describing the pattern of primary tiller appearance on main 
stem for each tiller node on rice cv. Gleva. Data points are the average thermal time when till-
ers in each node were developed, regardless the total amount of tillers developed in each node 
over the experiment. TiN, tiller no.; TT, thermal time; GDD, growing degree days.

Thermal time from seedling emergence (GDD)

9

8

Ti
lle

r n
od

e 
on

 m
ai

n 
st

em

TiN = 0.02TT – 1.99
R2 = 0.86***

7

6

5

4

3

2

1

0 100 200 300 400 500 600 700

2007

2008

2009

800



Spanish Journal of Agricultural Research� December 2015 • Volume 13 • Issue 4 • e0905

5Tillering and yield formation in a Mediterranean rice agrosystem

mum tiller stage (4.3 tillers/plant) at 9.6 leaf stage. 
Maximum rate of tiller emergence occurred at 6.3 leaf 
stage with a ratio of 0.8 tillers/leaf. From maximum 
tillering stage, tillering number decreased at the same 
maximum rate as emergence which happened at 12.6 
leaf stage (Fig. 2). 

Emergence of primary tillers was also linearly re-
lated to leaf emergence (R2=0.85, p<0.001). Emergence 
of subsequent tillers occurred every 1.6 leaf emergence 
on main stem (at a rate of 0.64±0.06 tillers/leaf).

Tiller dynamics per unit area

Changes in tiller number per unit area against ther-
mal time fitted to a rational function (Eq. [4], Fig. 3) 
through which tillering parameters were estimated 
(Table 2). The ANOVA for the estimated parameters 
indicated that tiller dynamics pattern was stable over 
years, since no significant differences across years 
(p<0.05) were found for any of the parameters save for 
the rate of tiller mortality, which was higher in 2009 
(1.2±0.07 tillers/GDD) than in 2007 (0.80±0.28 tillers/
GDD). Tillering started at 145±24 GDD which was 
around 10 days after seedling establishment. Tiller 
number increased with the maximum tillering stage 
occurring at 609±28 GDD (40 days after seedling es-

(14%). Development of primary tillers (Fig. 1) occurred 
from 200-300 GDD from seedling emergence (1.5 Haun 
leaf stage) to 425-600 GDD and thus, with some inter-
annual variability: earlier and shorter tillering in 2009 
(from 200 to 425 GDD) as opposed to later and longer 
tillering in 2007 (from 300 to 600 GDD). In calendar 
time, tillering duration in 2009 lasted 40 days whereas 
in 2007, 48 days (Fig. 1).

The relationship between thermal time and emer-
gence of primary tillers on MS was lineal (Eq. [2]: 
R2=0.86, p<0.001) with a constant time gap between 
subsequent primary tillers of 52.9±2.1 GDD. 

Rice plants produced up to 8 primary tillers (Fig. 1), 
from the first (T1) to the eight node position (T8). 
Emergence of tillers (Table 1) from middle nodes, those 
from nodes 4 and 5 (T4 and T5), was stable over the 
years with emergence rates superior to 74%. In con-
trast, development of lowermost (T1, T2) and upper-
most (T6, T7 and T8) nodes on MS showed some in-
terannual variability (p<0.001). Emergence of T1 and 
T2 overlapped, and T1 emergence was the lowest over 
the years (with a maximum emergence ratio of 16% in 
2009). T7 did not emerge in 2009 and neither did T8 
in 2008 and 2009. 

Tiller emergence was synchronized with leaf emer-
gence on MS (Eq. [3], Fig. 2); tiller emergence started 
at 3.5th-4th leaf stage and continued up to the maxi-

Table 1. Mean values of emergence and fertility ratios (%), grain number and yield per panicle in each tiller node. 

Tiller node1
Emergence ratio (%) Tiller fertility (%)

Total grain nº/panicle Grain weight/panicle
(g)2007 2008 2009 2007 2008 2009

MS 100 100 100 100 100 100 84.1±3.01a 2.33±0.070a
T12 0 4 16 - 0 8 63.0 ±38.0 1.6±1.0
T2 7c 41b 77a 20b 26 54a 43.8±6.0 c 1.2±0.2c
T3 19b 48a 77a 13b 37a 36a 58.9±4.3 ab 1.7±0.1b
T4 74a 89a 85a 48a 63a 4 54.8±6.3 b 1.5±0.2b
T5 90a 96a 73a 67a 44ab 8 53.2±3.7 b 1.5±0.1b
T62 73a 67a 15b 57a 15b 0 59.6±2.7 1.8±0.1
T72 15 52 0 23 0 – 33.6±14.7 1.0±0.4
T82 25 0 0 5 – – 29.0±0.8 0.8

Type III test of factors (REML)

Source of variation Emergence 
ratio Tiller fertility Grain 

number
Grain 

weight/panicle

Year ns ns ns ns
Tiller node * ns * *
Year * Tiller node * * ns ns
1 T1 to T8 denote the tiller position according to the leaf number from which the tiller was developed. MS, main stem. Emergence and 
tiller fertility ratios data presented are means in each tiller position within each year since the interaction effect was significant (p<0.05) 
while values presented for total grain number and grain weight per panicles are means across years for each tiller node as no year effect 
was observed.  2 Not considered in yield traits mean separation as they were absent (<5%) in some year: T1 in 2007, T6 in 2009 and 
T7 and T8 in 2008 and 2009. *Significant differences (p<0.05); ns: non-significant differences (p<0.05); Dash (-) have been inserted 
in tiller fertility when fertility could not be calculated because of absence of tiller emergence as opposed to 0 values, which means that 
none of the emerged tillers became productive. 
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tablishment) with 688±40 tillers/m2. Maximum rate of 
tiller emergence occurred half way between tillering 
onset and maximum tiller stage. Interannual non-sig-
nificant variability was observed around maximum 
tillering stage in both timing and tiller density: in 2007, 
50 tillers/m2 less were produced than the following 
years and maximum tillering stage occurred 126 GDD 
later. Such a delay in phenology tended to vanish over 
the cycle: panicle initiation and heading took place on 
average 90 and 22 GDD later, respectively, whereas 
maturity it occurred 53 GDD earlier than in 2009. The 
interannual differences in tiller number were compen-
sated by lower rates of tiller mortality in 2007, which 
was 80% lower than in 2008 and 2009, leading to 

eventually same panicle density (250±31 panicles/m2) 
over the three years. More than 60% of emerged tillers 
became fertile. 

Yield and yield components

The comparison of the mean values for grain yield 
and yield components (Table 3) showed that grain yield 
was stable across years with a mean of 933±42 g/m2 of 
rough rice. However, yield in 2007 declined non-sig-
nificantly by a 21% compared to the 2008-2009 aver-
age, as a consequence of the lower seedling establish-
ment and subsequent low plant density (p<0.05). 

Table 2. Mean values across experiments of the traits describing the tillering dynamics of rice cv. Gleva and ANOVA statistics 
for the effect of year.

Trait Mean±SE Mean
square F value

Thermal-time from seedling establishment to the onset of tillering (GDD) 145 ± 24.1 9722 2.58

Thermal-time from seedling establishment to maximum tiller number (GDD) 609 ± 27.9 16546 4.35

Rate of tiller appearance (no. of stems/GDD) 3.40 ± 0.30 0.93 1.14

Maximum no. of stems/m2 688 ± 40.3 3354 0.18

Thermal-time to the maximum rate of tiller appearance (GDD) 456 ± 17.7 4715 4.58

Rate of tiller mortality (no. of stems/GDD) -1.20 ± 0.15 0.53 6.26*

Thermal-time from seedling establishment to the maximum rate of tiller mortality (GDD) 737 ± 44.1 37349 3.43

No. of panicles/m2 250 ± 30.8 8320 0.97

Fertile tillering (%) 63.5 ± 4.6 329 2.28

*Significant differences across years (p<0.05). Data are means of field experiments conducted during three years. Significant differ-
ences between years were statistically significant (p<0.05) only for the rate of tiller mortality.

Figure 2. Relationships between the number of tillers per plant and the number of leaves on 
the main stem of rice cv. Gleva. Points represent the average of tiller number per plant over 
leaf development within each year. TiN, tiller no.; LN, leaf number.
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ier (2.33±0.07 g) than primary tillers (52.2±2.1 grains/
panicle, 1.46±0.063 g/panicle) and thus contributed 
more (52.3%) to plant yield than primary tillers. Among 
primary tillers, higher panicle yield in terms of grain 
number and grain weight was located in tillers from T3 
to T5 whereas remaining tillers showed either lower 
productivity and/or occasional presence in plant. 

Effect of tiller dynamics on yield formation

The stepwise regression analysis revealed that among 
all yield and tillering traits, i.e. plant density, yield 
components and maximum tiller number, the last was 
the most important trait explaining 56% of grain yield 
variation, as shown by the linear regression (Fig. 4). 

Correlation analysis among yield, yield components 
and tillering dynamics (Table 4) revealed that grain 
yield was positively correlated with maximum tiller 

No significant differences in either panicle density or 
1000-grain weight were found whereas grain number 
per panicle and panicle fertility significantly (p<0.05) 
differed between years. Panicles in 2009 had less num-
ber of grains (57.8±1.7) than in 2008 (62.3±2.1) and 
2007 (68.6±2.4) whereas percentage of filled grains per 
panicle in 2008 was 16% lower than in 2007 and 2009. 

Grain yield per plant was more variable over the 
years following a decreasing trend that lead to signifi-
cant differences between 2007 (5.9±1.9 g) and 2009 
(3.8±0.9 g). The same pattern was observed for number 
of panicles per plant. Panicle number per plant also 
declined over the years, besides differing nodal position 
of fertile tillers along the MS; plants at maturity in 
2007 and 2008 were mainly formed by T3 to T6 tillers 
whereas in 2009 they were formed by T2 and T3. How-
ever, same pattern of yield traits distribution along main 
stem over the years was observed. Panicles from main 
stem were larger (84.1±3.01 grains/panicle) and heav-

Table 3. Mean values for growth traits, yield and yield components of rice cv. Gleva and ANOVA statistics for the effect of year 
as source of variation. 

Trait 2007 2008 2009 Mean square F value

Seedling establishment (%) 40.0±2.43b 55.6±2.16a 65.2±2.78a 527 28.7
Density (plants/m2) 180 ± 10.7b 232 ± 9.5a 254 ± 0.01a 4302 21.0
Grain yield (g/m2) 819 ± 34.9 a 987 ± 81.9 a 993 ± 57.2 a 29254 2.61
Grain yield (g/plant) 5.9 ±1.9 a 4.7 ±0.6ab 3.8 ± 0.9b 2.21 3.57
Panicle no./plant 3.1 ± 1.0 a 2.7 ± 0.2 a 2.1 ± 0.5 a 1.07 2.65
Panicle no./m2 491 ± 20.2 a 491 ± 42.6 a 468 ± 36.6 a 508 0.14
Grain no./panicle 68.6 ± 2.3a 62.3 ± 2.1ab 57.8 ± 1.6b 87.7 6.85
Panicle fertility (%) 98.0 ± 0.2a 84.6 ± 2.3b 97.5 ± 0.2a 173 31.2
Thousand grain weight (g) 34.3 ± 0.9 a 35.2 ± 0.2 a 35.3 ± 0.3 a 0.99 2.50
Grain number/m2 33638 ± 453 a 30453 ± 2635 a 26959 ± 1402 a 33470314 3.04

Means within rows with the same letter are not significantly different at p<0.05.

Figure 3. Pattern of changes in the number of living tillers per unit area during the development 
of rice cv. Gleva. TiNM2, tiller no./m2; TT, thermal time; GDD, growing degree days.
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Table 4. Matrix of Pearson correlation coefficients between yield, yield components and traits describing the tillering dynamics. 

Plant 
density Grain yield Panicle  

no./m2
Grain  

no./panicle

Thousand 
grain 

weight

Grain  
no./m2

Maximum 
tiller no.

Tiller 
mortality

Tiller 
efficiency

Density (plants/m2) 1.00
Grain yield (g/m2) 0.21 1.00
Panicle no./m2 0.24 0.91* 1.00
Grain no./panicle 0.80* -0.19 -0.28 1.00
Thousand grain weight (g) -0.22 -0.10 -0.21 -0.12 1.00
Grain number/m2 -0.11 0.08* 0.88* 0.19 -0.12 1.00
Maximum tiller no. (tillers/m2) 0.44 0.83* 0.90* 0.69 -0.11 0.28 1.00
Tiller mortality (tillers/GDD) -0.56 0.22 0.45 0.44 -0.13 0.68 0.55 1.00
Tiller efficiency (%) -0.69 -0.64 -0.81* 0.70 -0.31 -0.48 -0.80* -0.11 1.00

* p<0.05. Data were averaged across years and replications. 

number, panicle density and grain number/m2 (p<0.05). 
Among yield components, negative correlations were 
found between panicle size (grain number per panicle) 
and maximum tiller number and tiller efficiency. 
Maximum tiller number and panicle density (panicle 
number/m2) were positively correlated with each other 
and with number of grains/m2.

Discussion

Primary tillers are developed from axillary buds in 
each leaf on the main stem (Matsuo & Hoshikawa, 
1993). Rice cultivar Gleva grown under standard agri-
cultural practices in the Mediterranean agrosystem of 
the Ebro Delta develops on average 13 leaves on the 
main stem (Martínez-Eixarch et al., 2013). Total leaf 
number on the main stem indicates the potential num-

ber of primary tillers, as they develop from the bud in 
the axil of the leaf (Nemoto et al., 1995). The present 
study demonstrates that Gleva cultivar (representative 
of rice plant type in Mediterranean rice fields) grown 
under the standard crop practices in Ebro Delta devel-
ops up to eight primary tillers out of the thirteen po-
tential ones, remaining the five uppermost axillary 
tiller buds latent. Tillering composition consists in a 
main middle tillering area (T4 -T5) on the main stem 
with low or nil emergences in the lowermost and up-
permost nodes. Despite the emergence of tillers can 
occur until the 8th node (as happened in 2007) plants 
reach on average a maximum of 4.3 tillers which is far 
from the 8 primary tillers observed. The difference 
results from low and variable emergences ratios in 
lowermost and uppermost nodes along with tiller se-
nescence taking place even before reaching maximum 
tillering stage. 

Figure 4. Relationship between maximum tiller number and grain yield of rice cv. Gleva. 
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unit area resulted in more than 60% of tillers becoming 
productive (panicle bearing), which is in line with other 
studies in lowland and transplanted paddy rice in which 
tillering efficiency ranged from 53 to 73% (Yan et al., 
2009) and from 48 to 58% (Bueno & Lafarge, 2009; 
Bueno et al., 2010) respectively. Similar interannual 
panicle density, which has been reported to be the main 
yield component in direct seeded rice (Miller et al., 
1991), resulted from higher tillering production per 
plant in 2007 that compensated lower seedling estab-
lishment. Maximum tiller number per unit area ex-
plained more than 50% of grain yield. In addition, grain 
yield was positively correlated with maximum tiller 
number, panicle density and grain number/m2, which 
also correlated among them. Altogether, points out the 
relevance of tillering in yield formation in Ebro Delta 
rice agrosystem. Such contribution could be explained 
by the positive association existing between higher 
tiller production, sink strength and storage capacity of 
carbohydrates (Samonte et al., 2006; Elhani et al., 
2007). The high percentage of filled grains/panicle 
observed in our study (>85%) suggests that grain filling 
was not limited (Lafarge & Bueno, 2009), hence sink 
size (i.e. spikelet number per unit area) rather than 
source strength (source availability during grain filling) 
is the limiting factor to grain yield. Accordingly, one 
might consider the use of strategies to promote sink 
strength through rice tillering to increase grain yield. 
However, compensatory relationships established over 
yield formation should be taken into account: early and 
luxuriant vegetative growth in 2009 did not result in 
higher grain yield because it was eventually offset by 
higher tiller abortion, which led to slight non-signifi-
cant lower panicle density, and fewer spikelets per 
panicle. The higher tiller mortality rates (located on 
last developed tillers) along with the negative correla-
tion between maximum tiller number and tiller effi-
ciency despite similar maximum tiller density, suggests 
that more intense within-plant competition was set 
likely because of the longer and eventual excessive 
vegetative development. Since last developed tillers 
show higher mortality ratios and less yield potential, 
which is in line with Jaffuel & Dauzat (2005) and Mo-
hapatra & Kariali (2008) for rice and with Lafarge et 
al. (2002) for sorghum, we hypothesize that early start 
of vegetative development along with inhibition of late 
tiller emergence might decrease internal competition 
so that superiority of early vegetative growth could be 
maintained until reproductive and grain filling stages 
resulting in higher grain yield. Then, our study indi-
cates that the regulation of rice tillering through promo-
tion of early tillering followed by inhibition of late 
tillering might optimize rice crop productivity. Studies 
to provide strategies to induce such tillering pattern in 

Interannual variability in T2-T3 versus T6 positions 
defines two distinct types of rice plants: mid-late  
tillering (2007 and 2008) and early-tillering (2009) 
plants. Years 2007 and 2009 exhibited the most contrast-
ing growing conditions despite the same agronomic 
management was used. Main differences were given by 
crop establishment which was lower and poorer in 2007 
because of attack of midges (Chironomus sp. and Cri-
cotopus sp.), which ate seeds embryo and radicles, 
causing lower plant density and impaired development 
of early tillers. Such scarce and weak development in 
early nodes was compensated by later tiller development 
(from T6 to T8) resulting in slight delays in the crop 
phenology that were eventually vanished after heading 
stage. In contrast, profuse vegetative growth in 2009, 
shown by high emergence ratios from T2 to T5, pre-
vented from later tiller emergence in higher nodes. 
Previous studies reported that tillering cessation is in-
duced by the achievement of critical values for leaf area 
index (Lafarge & Hammer, 2002a; Zhong et al., 2002), 
foliar nitrogen concentration (Kim & Vergara, 1990; 
Sasaki & Toriyama, 2006), red:red-far light ratio or PAR 
(photosynthetically active radiation) value of the can-
opy (Evers et al., 2007). Hence, earlier vegetative plant 
development in 2009 may have hastened the attainment 
of these critical values thus explaining the inhibition of 
further tiller emergence beyond T5. In addition, excess 
of stems was corrected by senescence of last emerged 
tillers (Mohapatra et al., 2011). 

Plant yield was modulated by tillering dynamics: 
lower internal plant competition in 2007 resulted in 
more panicles/plant and more grain number/panicle 
leading to higher plant yield. However, pattern of plant 
yield distribution was uniform over years exhibiting 
dominance of main stem over primary tillers which is 
in line with previous studies on rice (Awan et al., 2007; 
Mohapatra & Kariali, 2008), barley (Cannell, 1969) 
and wheat (Metho et al., 1998). Among primary tillers, 
location of highest-yield panicles occurred in nodes 
with the highest tiller emergence ratios whereas con-
tribution of lowermost and uppermost tillers to plant 
yield was low and variable. Less time availability for 
vegetative growth in later tillers (T7 was developed 
150 GDD later than T4; Fig. 1) and impaired bud de-
velopment in lowermost nodes caused by flooding 
conditions (Yoshida, 1981; Sasaki et al., 2002a, 2004) 
may have limited yield potential of these tillers. There-
fore, the paddy cultivation causes a difference in the 
distribution of yield within the plant compared to other 
agrosystems in other crops such as barley and wheat, 
in which tillers on lower node positions, along with 
main stem, are the major contributors to plant yield 
(Cannell, 1969; Kirby et al., 1985; Otteson et al., 
2008). The overall balance of tillering dynamics per 
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a particular rice agro-system should be carried out. In 
this sense, total amount and timing of nitrogen fertili-
zation should be considered given its influence not only 
on tillering capacity (Yoshida, 1981) but also on the 
temporal pattern by either promoting early tillering 
(Sasaki et al., 2002b; Pham Quang et al., 2004), limit-
ing their emergence (Kim & Vergara, 1990; Zhong et 
al., 2002; Sasaki & Toriyama, 2006) or even inducing 
tiller senescence (Zhong et al., 2002; Pham Quang et 
al., 2004).

Modulation of tiller dynamics through agronomic 
practices has important agronomic implications in 
terms of precise-farming, which consists on agricul-
tural management based on crop phenology and needs 
of the crop at different growth stages. Regulation of 
tiller dynamics needs to be based on predictability of 
tillering pattern (Zhong et al., 1999).

Our study provides a function to describe tiller dy-
namics per unit area based on GDD with high applica-
bility at both technical and farm level. When water and 
fertilizer are not limiting factors, as usually happens in 
Ebro Delta rice system, tillering pattern at similar plant 
densities is mainly determined by solar radiation and 
temperature (Mi et al., 2005). The strong relationship 
between these two meteorological variables allows 
tillering modelling to be based on the relationship be-
tween tillering dynamics and growing-degree-days 
(Caton et al., 1998). At plant level, our study reveals, 
firstly that emergence of primary tillers in cv. Gleva is 
predictable and defined by constant interval time be-
tween subsequent tillers and secondly, that it is highly 
synchronized with leaf emergence. Tillering production 
in irrigated rice crop has been modelled (Zhong et al., 
1999) providing several models such as TILL (Penning 
de Vries et al., 1989), RGR (Dingkuhn et al., 1992) and 
SINK (Drenth et al., 1994). However, these models are 
based on data from contrasting rice cultivation systems 
to Ebro Delta’s, with different cultivars, climatic con-
ditions and planting techniques that may influence on 
tillering pattern. Moreover, they require destructive 
sampling that increases their complexity and limits 
their applicability at a technical or farm level. The 
cultivar utilised for this study belongs to temperate 
Japonica subspecies, which are mostly grown in Eu-
rope (Aldo, 2007) and North Pacific (Agrama et al., 
2010). It has been reported that temperate Japonica 
rice germplasm has lower genetic diversity than Indica 
rice type (Shu et al., 2009; Agrama et al., 2010). Al-
though environmental and genotypic specific calibra-
tions are needed, the genetic similarity among Ja-
ponica varieties lead us to suggest that tiller dynamics 
equations herein provided may be considered as a basis 
for validation in further studies on rice tillering model-
ling in systems as those in the Mediterranean rice 

agrosystems. In addition, calibration and validation to 
Mediterranean environment of alternative models as 
well as the comparison of their capacity to predict 
tiller dynamics with the equation we provide could also 
be considered in these studies.

In summary, plant and crop tillering dynamics in the 
Ebro Delta rice agrosystem can be accurately pre-
dicted through equations herein provided, which are 
based either on thermal time or leaf development. 
Plants of Gleva cv. grown under the standard agricul-
tural practices develop up to 8 primary tillers and they 
are mainly composed by the main stem plus two pri-
mary tillers located on the low or middle tillering area 
with some variability explained by growing conditions. 
Our study demonstrates the crucial role of rice tillering 
on yield formation at two scales: at a plant level, as the 
main tillering zone in terms of emergence frequency 
becomes the most productive; and at crop level, since 
the maximum tiller number is the main explanatory 
variable of crop grain yield in this particular agrosys-
tem. Therefore, we suggest more studies should be 
conducted to analyse options of tillering modulation to 
optimize rice grain yield. 

Acknowledgments

The authors wish to thank Dr. Conxita Royo (IRTA) 
and Dr. Martin Lukac (University of Reading, UK) for 
their scientific revisions prior to submission. 

References

Agrama HA, Yan W, Jia M, Fjellstrom RMcClung AM, 2010. 
Genetic structure associated with diversity and geograph-
ic distribution in the USDA rice world collection. Nat Sci 
2(4): 247-291. http://dx.doi.org/10.4236/ns.2010.24036

Alam MM, Hasanuzzaman M, Nahar K, 2009. Tiller dynam-
ics of three irrigated rice varieties under varying phos-
phorus levels. Am-Euras J Agron 2(2): 89-94.

Aldo F, 2007. Rice scenario in the European Union. Cahiers 
Agricultures 16(4): 272-277.

Awan TH, Mushtaq A, Inayat A, Muhammad A, Zaheen M, 
2007. Contribution of tillers within a rice plant to yield 
and yield components. J Agric Res 45(3): 237-243.

Bueno CS, Lafarge T, 2009. Higher crop performance of rice 
hybrids than of elite inbreds in the tropics: 1. Hybrids 
accumulate more biomass during each phenological phase. 
Field Crop Res 112(2-3): 229-237. http://dx.doi.
org/10.1016/j.fcr.2009.03.006

Bueno CS, Pasuquin E, Tubaña B, Lafarge T, 2010. Improving 
sink regulation, and searching for promising traits associ-
ated with hybrids, as a key avenue to increase yield poten-
tial of the rice crop in the tropics. Field Crop Res 118(3): 
199-207. http://dx.doi.org/10.1016/j.fcr.2010.04.004

http://dx.doi.org/10.4236/ns.2010.24036
http://dx.doi.org/10.1016/j.fcr.2009.03.006
http://dx.doi.org/10.1016/j.fcr.2009.03.006
http://dx.doi.org/10.1016/j.fcr.2010.04.004


Spanish Journal of Agricultural Research� December 2015 • Volume 13 • Issue 4 • e0905

11Tillering and yield formation in a Mediterranean rice agrosystem

Kim JK,Vergara BS, 1990. Tillering behavior of low and hihg 
tillering rices. Korean J Crop Sci 35(6): 512-517.

Kirby EJM, Margaret A, Gynneth F, 1985. Leaf emergence 
and tillering in barley and wheat. Agronomie 5(3): 193-
200. http://dx.doi.org/10.1051/agro:19850301

Lafarge M, 2000. Phenotypes and the onset of competition 
in spring barley stands of one genotype: Daylength and 
density effects on tillering. Eur J Agron 12(3-4): 211-223. 
http://dx.doi.org/10.1016/S1161-0301(00)00047-2

Lafarge TA, Hammer GL, 2002a. Tillering in grain sorghum 
over a wide range of population densities: Modelling 
dynamics of tiller fertility. Ann Bot 90(1): 99-110. http://
dx.doi.org/10.1093/aob/mcf153

Lafarge TA, Hammer GL, 2002b. Predicting plant leaf area 
production: Shoot assimilate accumulation and partitioning, 
and leaf area ratio, are stable for a wide range of sorghum 
population densities. Field Crop Res 77(2-3): 137-151. 
http://dx.doi.org/10.1016/S0378-4290(02)00085-0

Lafarge T, Bueno CS, 2009. Higher crop performance of rice 
hybrids than of elite inbreds in the tropics: 2. Does sink 
regulation, rather than sink size, play a major role? Field 
Crop Res 112(2-3): 238-244. http://dx.doi.org/10.1016/j.
fcr.2009.03.007

Lafarge M, Broad IJ, Hammer GL, 2002. Tillering in grain 
sorghum over a wide range of population densities: Iden-
tification of a common hierarchy for tiller emergence, leaf 
area development and fertility. Ann Bot 90(1): 87-98. 
http://dx.doi.org/10.1093/aob/mcf152

Martínez-Eixarch M, Zhu D, Català-Forner MM, Pla-Mayor 
E, Tomàs-Navarro N, 2013. Water, nitrogen and plant 
density affect the response of leaf appearance of direct 
seeded rice to thermal time. Rice Science 20(1): 52-60. 
http://dx.doi.org/10.1016/S1672-6308(13)60108-0

Matsuo T, Hoshikawa K (eds), 1993. Science of rice plant. 
Food and Agriculture Policy Research Center, Tokyo. 
686 pp.

McMaster GS, Wilhelm WW, Palic DB, Porter JR, Jamieson 
PD, 2003. Spring wheat leaf appearance and temperature: 
Extending the paradigm? Ann Bot 91: 697-705. http://
dx.doi.org/10.1093/aob/mcg074

Metho LA, Hammes PS, Beyers EA, 1998. The effect of soil 
fertility on the contribution of main stem, tillers and ker-
nel position to grain yield and grain protein content of 
wheat. S Afr J Plant Soil 15(2): 53-60. http://dx.doi.org/
10.1080/02571862.1998.10635117

Mi X, Zou Y, Wei W, Ma K, 2005. Testing the generalization 
of artificial neural networks with cross-validation and 
independent-validation in modelling rice tillering dynam-
ics. Ecol Model 181: 493-508. http://dx.doi.org/10.1016/j.
ecolmodel.2004.06.035

Miller BC, Hill JE, Roberts SR, 1991. Plant population ef-
fects on growth and yield in water-seeded rice. Agron J 
83(2): 291-297. http://dx.doi.org/10.2134/agronj1991.00
021962008300020006x

Mohapatra PK, Kariali E, 2008. Time of emergence deter-
mines the pattern of dominance of rice tillers. Aust J Crop 
Sci 1(2): 53-62.

Mohapatra PK, Panda BB, Kariali E, 2011. Plasticity of 
tiller dynamics in wild rice Oryza rufipogon Griff.: A 

Cannell RQ, 1969. Tillering pattern in barley varieties. I. 
Production survival and contribution to yield by compo-
nent tillers. J Agric Res 72: 405-422. http://dx.doi.
org/10.1017/s0021859600024837

Caton BP, Foin TC, Gibson KD, Hill JE, 1998. A tempera-
ture-based model of direct-, water-seeded rice (Oryza 
sativa) stand establishment in California. Agr Forest 
Meteorol 90(12): 91-102. http://dx.doi.org/10.1016/S0168-
1923(97)00088-9

Counce PA, Siebenmorgen TJ, Poag MA, Holloway GE, 
Kocher M, FLu R, 1996. Panicle emergence of tiller types 
and grain yield of tiller order for direct-seeded rice culti-
vars. Field Crop Res 47(2-3): 235-242. http://dx.doi.
org/10.1016/0378-4290(96)00011-1

DeDatta SK, 1981. Principles and practices of rice produc-
tion. John Wiley & Sons, Inc., New York. 618 pp.

Dingkuhn M, De Datta SK, Javellana C, Pamplona R, 
Schnier HF, 1992. Effect of late-season fertilization on 
photosynthesis and yield of transplanted and direct-
seeded tropical flooded rice. I. Growth dynamics. Field 
Crop Res 28(3): 223-234. http://dx.doi.org/10.1016/0378-
4290(92)90042-8

Drenth H, ten Berge H FM, Riethoven JJM, 1994. ORYZA 
simulation modules for potential and nitrogen limited rice 
production. SARP Research Proceedings. DLO-Research 
Institute for Agrobiology and Soil Fertility, IRRI. 228 pp.

Elhani S, Martos V, Rharrabti Y, Royo C, García del Moral 
LF, 2007. Contribution of main stem and tillers to durum 
wheat (Triticum turgidum L. var. Durum) grain yield and 
its components grown in mediterranean environments. 
Field Crop Res 103(1): 25-35. http://dx.doi.org/10.1016/j.
fcr.2007.05.008

Evers JB, Vos J, Fournier C, Andrieu B, Chelle M, Struik 
PC, 2007. An architectural model of spring wheat: Eval-
uation of the effects of population density and shading on 
model parameterization and performance. Ecol Model 
200(3-4): 308-320. http://dx.doi.org/10.1016/j.ecolmod-
el.2006.07.042

Gendua PA, Yamamoto Y, Miyazaki A, Yoshida TWang YL, 
2009. Effects of the tillering nodes on the main stem of a 
chinese large-panicle-type rice cultivar, Yangdao 4, on the 
growth and yield-related characteristics in relation to crop-
ping season. Plant Prod Sci 12(2): 257-266. http://dx.doi.
org/10.1626/pps.12.257

Hammer GL, Hill K, Schrodter GN, 1987. Leaf area produc-
tion and senescence of diverse grain sorghum hybrids. 
Field Crop Res 17(3-4): 305-317. http://dx.doi.
org/10.1016/0378-4290(87)90042-6

Haun JR, 1973. Visual quantification of wheat development. 
Agron J 65: 116-119. http://dx.doi.org/10.2134/agronj19
73.00021962006500010035x

Jaffuel S, Dauzat J, 2005. Synchronism of leaf and tiller 
emergence relative to position and to main stem develop-
ment stage in a rice cultivar. Ann Bot 95(3): 401-412. 
http://dx.doi.org/10.1093/aob/mci043

Kariali E, Kuanar SR, Mohapatra PK, 2008. Individual 
tiller dynamics of two wild oryza species in contrasting 
habitats. Plant Prod Sci 11(3): 355-360. http://dx.doi.
org/10.1626/pps.11.355

http://dx.doi.org/10.1051/agro:19850301
http://dx.doi.org/10.1016/S1161-0301%2800%2900047-2
http://dx.doi.org/10.1093/aob/mcf153
http://dx.doi.org/10.1093/aob/mcf153
http://dx.doi.org/10.1016/S0378-4290%2802%2900085-0
http://dx.doi.org/10.1016/j.fcr.2009.03.007
http://dx.doi.org/10.1016/j.fcr.2009.03.007
http://dx.doi.org/10.1093/aob/mcf152
http://dx.doi.org/10.1016/S1672-6308%2813%2960108-0
http://dx.doi.org/10.1093/aob/mcg074
http://dx.doi.org/10.1093/aob/mcg074
http://dx.doi.org/10.1080/02571862.1998.10635117
http://dx.doi.org/10.1080/02571862.1998.10635117
http://dx.doi.org/10.1016/j.ecolmodel.2004.06.035
http://dx.doi.org/10.1016/j.ecolmodel.2004.06.035
http://dx.doi.org/10.2134/agronj1991.00021962008300020006x
http://dx.doi.org/10.2134/agronj1991.00021962008300020006x
http://dx.doi.org/10.1017/s0021859600024837
http://dx.doi.org/10.1017/s0021859600024837
http://dx.doi.org/10.1016/S0168-1923%2897%2900088-9
http://dx.doi.org/10.1016/S0168-1923%2897%2900088-9
http://dx.doi.org/10.1016/0378-4290%2896%2900011-1
http://dx.doi.org/10.1016/0378-4290%2896%2900011-1
http://dx.doi.org/10.1016/0378-4290%2892%2990042-8
http://dx.doi.org/10.1016/0378-4290%2892%2990042-8
http://dx.doi.org/10.1016/j.fcr.2007.05.008
http://dx.doi.org/10.1016/j.fcr.2007.05.008
http://dx.doi.org/10.1016/j.ecolmodel.2006.07.042
http://dx.doi.org/10.1016/j.ecolmodel.2006.07.042
http://dx.doi.org/10.1626/pps.12.257
http://dx.doi.org/10.1626/pps.12.257
http://dx.doi.org/10.1016/0378-4290%2887%2990042-6
http://dx.doi.org/10.1016/0378-4290%2887%2990042-6
http://dx.doi.org/10.2134/agronj1973.00021962006500010035x
http://dx.doi.org/10.2134/agronj1973.00021962006500010035x
http://dx.doi.org/10.1093/aob/mci043
http://dx.doi.org/10.1626/pps.11.355
http://dx.doi.org/10.1626/pps.11.355


Maite Martínez-Eixarch, M. del Mar Català, Núria Tomàs, Eva Pla and Defeng Zhu

Spanish Journal of Agricultural Research� December 2015 • Volume 13 • Issue 4 • e0905

12

strategy for resilience in suboptimal environments. Int J 
Agron 2011. http://dx.doi.org/10.1155/2011/543237

Nemoto K, Morita S, Baba T, 1995. Shoot and root develop-
ment in rice related to the phyllochron. Crop Sci 35(1): 
24-29. http://dx.doi.org/10.2135/cropsci1995.0011183X
003500010005x

Ohe M, Okita N, Daimon H, 2010. Effects of deep-flooding 
irrigation on growth, canopy structure and panicle weight 
yield under different planting patterns in rice. Plant Prod 
Sci 13(2): 193-198. http://dx.doi.org/10.1626/pps.13.193

Otteson BN, Mergoum M, Ransom JK, Schatz B, 2008. 
Tiller contribution to spring wheat yield under varying 
seeding and nitrogen management. Agron J 100(2): 406-
413. http://dx.doi.org/10.2134/agrojnl2007.0109

Ottis BV, Talbert RE, 2005. Rice yield components as af-
fected by cultivar and seeding rate. Agron J 97(6): 1622-
1625. http://dx.doi.org/10.2134/agronj2005.0123

Peng S, Yang J, Garcia FV, Laza RC, Visperas RM, Sanico AL, 
Chavez AQ, Virmani SS, 1998. Physiology-based crop man-
agement for yield maximization of hybrid rice. In: Advanc-
es in hybrid rice technology. Proc 3rd Int Symp on Hybrid 
Rice, 14-16 November 1996, Hyderabad, India. pp: 157-176.

Penning de Vries FWT, Jansen D, ten Berge HFM, Bakema 
A, 1989. Simulation of ecophysiological processes of 
growth in several annual crops. Centre for Agricultural 
Publishing and Documentation (Pudoc), Wageningen.

Pham Quang D, Tanaka D, Abe A, Sagawa S, Kuroda E, 
2004. Analysis of the number of spikelets per panicle on 
the main stems, primary and secondary tillers of different 
rice genotypes grown under the conventional and nitrogen-
free basal dressing accompanied with sparse planting 
density practices. Plant Prod Sci 7(4): 456-462. http://
dx.doi.org/10.1626/pps.7.456

Piepho HP, Büchse A, Richter C, 2004. A mixed modelling 
approach for randomized experiments with repeated meas-
ures. J Agron Crop Sci 190: 230-247. http://dx.doi.
org/10.1111/j.1439-037X.2004.00097.x

Samonte SOPB, Wilson LT, Tabien RE, 2006. Maximum 
node production rate and main culm node number contri-
butions to yield and yield-related traits in rice. Field Crop 
Res 96(2-3): 313-319. http://dx.doi.org/10.1016/j.
fcr.2005.07.014

Sasaki R, Toriyama K, 2006. Nitrogen content of leaves af-
fects the nodal position of the last visible primary tiller 
on main stems of rice plants grown at various plant densi-
ties. Plant Prod Sci 9(3): 242-248. http://dx.doi.
org/10.1626/pps.9.242

Sasaki R, Shibata Y, Toriyama K, 2002a. Effect of uneven-
ness in a paddy field on the early growth and tillering in 
direct seeding cultivation of rice. Jpn J Crop Sci 71(3): 

308-316. [in Japanese, abstract in English]. http://dx.doi.
org/10.1626/jcs.71.308

Sasaki Y, Ando H, Kakuda K, 2002b. Relationship between 
ammonium nitrogen in soil solution and tiller number 
at early growth stage of rice. J Soil Sci Plant Nutr 48 
(1): 57-63. http://dx.doi.org/10.1080/00380768.2002.1
0409171

Sasaki R, Toriyama K, Shibata Y, Sugimoto M, 2004. Effect 
of the suppression of tiller emergence on the relationship 
between seedling density and nodal position of the last 
visible primary tiller in direct seeding cultivation of rice. 
Jpn J Crop Sci 73(3): 309-314. [in Japanese, abstract in 
English]. http://dx.doi.org/10.1626/jcs.73.309

Shu AP, Hwan KJ, Zhang SY, Cao GL, Nan ZH, Seong LK, 
Lu QH, 2009. Analysis on genetic similarity of Japonica 
rice variety from different origins of geography in the 
world. Agric Sci Chin 8(5): 513-520. http://dx.doi.
org/10.1016/S1671-2927(08)60241-2

Takaya Y, Kyuma K, Kawaguchi K, 1974. Rice cultivation 
and its environmental conditions in the mediterranean 
countries I. Climate and physiography in relation to rice 
cultivation. J Soil Sci Plant Nutr 20: 209-223. http://
dx.doi.org/10.1080/00380768.1974.10433244

Thakur AK, Rath S, Roychowdhury S, Uphoff N, 2009. 
Comparative performance of rice with system of rice 
intensification (SRI) and conventional management using 
different plant spacings. J Agron Crop Sci 196(2): 146-
159. http://dx.doi.org/10.1111/j.1439-037X.2009.00406.x

Wu G, Wilson LT, McClung AM, 1998. Contribution of rice 
tillers to dry matter accumulation and yield. Agron J 90(3): 
317-323. http://dx.doi.org/10.2134/agronj1998.0002196
2009000030001x

Yan J, Yu J, Tao GC, Vos J, Bouman BAM, Xie GH, Meinke 
H, 2009. Yield formation and tillering dynamics of direct-
seeded rice in flooded and nonflooded soils in the Huai 
River Basin of China. Field Crop Res 116(3): 252-259. 
http://dx.doi.org/10.1016/j.fcr.2010.01.002

Yin XY, Kropff MJ, 1996. The effect of temperature on leaf 
appearance in rice. Ann Bot 77(3): 215-221. http://dx.doi.
org/10.1006/anbo.1996.0025

Yoshida S, 1981. Fundamentals of rice crop science The 
IRRI, Los Baños.

Zhong X, Peng S, Sheehy J, Liu H, Visperas RM, 1999. 
Parameterization, validation and comparison of three 
tillering models for irrigated rice in the tropics. Plant Prod 
Sci 2: 258-266. http://dx.doi.org/10.1626/pps.2.258

Zhong X, Peng S, Sheehy JE, Visperas RM, Liu H, 2002. Re-
lationship between tillering and leaf area index: Quantifying 
critical leaf area index for tillering in rice. J Agr Sci 138: 
269-279. http://dx.doi.org/10.1017/S0021859601001903

http://dx.doi.org/10.1155/2011/543237
http://dx.doi.org/10.2135/cropsci1995.0011183X003500010005x
http://dx.doi.org/10.2135/cropsci1995.0011183X003500010005x
http://dx.doi.org/10.1626/pps.13.193
http://dx.doi.org/10.2134/agrojnl2007.0109
http://dx.doi.org/10.2134/agronj2005.0123
http://dx.doi.org/10.1626/pps.7.456
http://dx.doi.org/10.1626/pps.7.456
http://dx.doi.org/10.1111/j.1439-037X.2004.00097.x
http://dx.doi.org/10.1111/j.1439-037X.2004.00097.x
http://dx.doi.org/10.1016/j.fcr.2005.07.014
http://dx.doi.org/10.1016/j.fcr.2005.07.014
http://dx.doi.org/10.1626/pps.9.242
http://dx.doi.org/10.1626/pps.9.242
http://dx.doi.org/10.1626/jcs.71.308
http://dx.doi.org/10.1626/jcs.71.308
http://dx.doi.org/10.1080/00380768.2002.10409171
http://dx.doi.org/10.1080/00380768.2002.10409171
http://dx.doi.org/10.1626/jcs.73.309
http://dx.doi.org/10.1016/S1671-2927%2808%2960241-2
http://dx.doi.org/10.1016/S1671-2927%2808%2960241-2
http://dx.doi.org/10.1080/00380768.1974.10433244
http://dx.doi.org/10.1080/00380768.1974.10433244
http://dx.doi.org/10.1111/j.1439-037X.2009.00406.x
http://dx.doi.org/10.2134/agronj1998.00021962009000030001x
http://dx.doi.org/10.2134/agronj1998.00021962009000030001x
http://dx.doi.org/10.1016/j.fcr.2010.01.002
http://dx.doi.org/10.1006/anbo.1996.0025
http://dx.doi.org/10.1006/anbo.1996.0025
http://dx.doi.org/10.1626/pps.2.258
http://dx.doi.org/10.1017/S0021859601001903

