Calibrating a flow model in an irrigation network: Case study in Alicante, Spain

Modesto Pérez-Sánchez, Francisco J. Sánchez-Romero, Helena M. Ramos, P. Amparo López-Jiménez


The usefulness of models depends on their validation in a calibration process, ensuring that simulated flows and pressure values in any line are really occurring and, therefore, becoming a powerful decision tool for many aspects in the network management (i.e., selection of hydraulic machines in pumped systems, reduction of the installed power in operation, analysis of theoretical energy recovery). A new proposed method to assign consumptions patterns and to determine flows over time in irrigation networks is calibrated in the present research. As novelty, the present paper proposes a robust calibration strategy for flow assignment in lines, based on some key performance indicators (KPIF) coming from traditional hydrological models: Nash-Sutcliffe coefficient (non-dimensional index), root relative square error (error index) and percent bias (tendency index). The proposed strategy for calibration was applied to a real case in Alicante (Spain), with a goodness of fit considered as “very good” in many indicators. KPIF parameters observed present a satisfactory goodness of fit of the series, considering their repeatability. Average Nash-Sutcliffe coefficient value oscillated between 0.30 and 0.63, average percent bias values were below 10% in all the range, and average root relative square error values varied between 0.65 and 0.80.


water management; calibration model; Key Performance Indicators

Full Text:



Abbasi F, Feyen J, Van Genuchten MT, 2004. Two-dimensional simulation of water flow and solute transport below furrows: Model calibration and validation. J Hydrol 290: 63-79.

Allen RG, Pereira LS, Raes D, Smith M, 2006. Crop evapotranspiration: Guidelines for computing crop water requeriments. FAO Irrig Drain Paper 56, Rome.

Arbat G, Pujol J, Pelegrí M, Puig-Bargués J, Duran-Ros M, Cartagena FR, 2013. An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation. Span J Agric Res 11 (1): 244-257.

BOE, 2016. Royal decree 1/2016, of 8 January, that approved the revision of the Hydrological Plan Júcar River Basin Districts. Boletín Oficial del Estado (Spain) No. 439, 08/01/16.

Boissezon J, Haït JR, 1965. Calcul des débits dans les réseaux d'irrigation. La Houille Blanche 2: 159-164.

Braun JV, Ruel MT, Gillespie S, 2010. Calibration of hydraulic of network model. In: Water distribution systems handbook; Mays LW (ed), pp: 279-304. McGraw-Hills, Arizona, USA.

Butera I, Balestra R, 2015. Estimation of the hydropower potential of irrigation networks. Renew Sustain Energ Rev 48: 140-151.

Cabrera E, Cobacho R, Soriano J, 2014. Towards an energy labelling of pressurized water networks. Procedia Eng 70: 209-217.

Cabrera J, 2009. Calibración de modelos hidrológicos. Instituto para la Mitigación de los Efectos del Fenómeno el Niño, Lima, Perú.

Carravetta A, Del Giudice G, Fecarotta O, Ramos HM, 2012. Energy production in water distribution networks: A PAT design strategy. Water Resour Manag 26: 3947-3959.

Carravetta A, Del Giudice G, Oreste F, Ramos HM, 2013. PAT design strategy for energy recovery in water distribution networks by electrical regulation. Energies 6: 411-424.

Carravetta A, Fecarotta O, Del Giudice G. Ramos HM, 2014. Energy recovery in water systems by PATs: A comparison among the different installation schemes. Procedia Eng 70: 275-284.

Choulot A, 2010. Energy recovery in existing infrastructures with small hydropower plants. FP6 Project Shapes (Work Package 5-WP5). European Directorate for Transport and Energy.

Clark C, Wu ZY, 2006. Integrated hydraulic model and genetic algorithm optimization for informed analysis of a real water system. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA.

Clément R, (1955). Le calcul des débits dans les réseaux d'irrigation fonctionnant à la demande Journées d'études sur l'irrigation. 27-30 juin. Association Amicale des Anciens Élèves de l'Ecole National.

Clément R, 1966. Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande. La Houille Blanche 5: 553-575.

Corominas J, 2010. Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del Agua 17 (3): 219-233.

Datta RSN, Sridharan K, 1994. Parameter estimation in water-distribution systems by least squares. J Water Resour Plan Manage 120 (4): 405-422.

Davidson JW, Bouchart FJC, 2006. Adjusting nodal demands in SCADA constrained real-time water distribution network models. J Hydraul Eng 132 (1): 102-110.

Delgoda D, Malano H, Saleem SK, Halgamuge MN, 2016. Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environ Model Softw 78: 40-53.

Emec S, Bilge P, Seliger G, 2015. Design of production systems with hybrid energy and water generation for sustainable value creation. Clean Technol Environ Policy 17: 1807-1829.

Ghiass M, Zimbra DK, Saidane H, 2008. Urban water demand forecasting with a dynamic artificial neural network model. J Water Resour Plan Manage 134 (2): 138-146.

Granados A, 1986. Redes colectivas del riego a presión. Escuela de Ingenieros de Caminos y Puertos, Univ. Politécnica, Madrid.

Granados A, 2013. Criterios para el dimensionamiento de redes de riego robustas frente a cambios en la alternativa de cultivos. Doctoral Thesis, Univ. Politécnica, Madrid.

Granados A, Martín-Carrasco FJ, Jalón SG, Iglesias A, 2015. Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution. Span J Agric Res 13 (4): e1205.

Gupta HV, Sorooshian S, Yapo PO, 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J Hydrol Eng 4: 135-143.

Lamaddalena N, Sagardoy JA, 2000. Performance analysis of on-demand pressurized irrigation systems. FAO, Roma, Italy. 132 pp.

Legates DR, McCabe GJ, 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour Res 35: 233-241.

Martínez-Solano J, Iglesias-Rey PL, Pérez-García R, López-Jiménez PA, 2008. Hydraulic analysis of peak demand in looped water distribution networks. J Water Resour Plan Manag 134: 504-510.

McCuen RH, Knight Z, Cutter AG, 2006. Evaluation of the Nash-Sutcliffe efficiency index. J Hydrol Eng 11: 597-602.

Moreno MA, Planells P, Ortega JF, Tarjuelo J, 2007. New methodology to evaluate flow rates in on-demand irrigation networks. J Irrig Drain Eng 133: 298-306.

Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith TL, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE 50: 885-900.

Mulligan AE, Brown LC, 1998. Genetic algorithms for calibrating water quality models. J Environ Eng 124: 202-211.

Nash JE, Sutcliffe JV, 1970. River flow forecasting through conceptual models part I: A discussion of principles. J Hydrol 10: 282-290.

Pardo MA, Manzano J, Cabrera E, García-Serra J, 2013. Energy audit of irrigation networks. Biosyst Eng 115: 89-101.

Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez P, 2016. Modeling irrigation networks for the quantification of potential energy recovering: A case study. Water 8: 1-26.

Preis A, Whittle A, Ostfeld A, 2009. Online hydraulic state prediction for water distribution systems. World Environ Water Resour Congr 2009: 1-23.

Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC 2003. Water delivery system planning considering irrigation simultaneity. J Irrig Drain Eng 129: 247-255.

Ramos H, Borga A, 1999. Pumps as turbines: an unconventional solution to energy production. Urban Water 1: 261-263.

Ramos H, Mello M, De PK, 2010a. Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Sci Technol Water Supply 10: 39-49.

Ramos H, Vieira F, Covas DIC, 2010b. Energy efficiency in a water supply system: Energy consumption and CO2 emission. Water Sci Eng 3: 331-340.

Ritter A, Muñoz-Carpena R, Regalado C, 2009. Capacidad de predicción de modelos aplicados a ZNS: Herramienta informática para la adecuada evaluación de la bondad-de-ajuste con significación estadística. IX Jornadas sobre Investigación de la Zona no Saturada del Suelo - ZNS'09; Silva Rojas O & Carrera Ramírez J (eds). Barcelona.

Rodriguez-Diaz JA, Camacho-Poyato E, Carrillo-Cobo MT, 2010. The role of energy audits in irrigated areas. The case of "Fuente Palmera" irrigation district (Spain). Span J Agric Res 8 (2): 152-161.

Rossman LA, 2000. Epanet Manual. Cincinnati, OH, USA.

Sanz G, Pérez R, 2014. Demand pattern calibration in water distribution networks. Procedia Eng 70: 1495-1504.

Sanz G, Pérez R, 2015. Comparison of demand calibration in water distribution networks using pressure and flow sensors. Procedia Eng 119: 771-780.

Singh J, Knapp HV, Demissie M, 2005. Hydrologic modelling of the Iroquois River watershed using HSPF and SWAT. Water Resour Assoc 41: 343-350.

Soler J, Latorre J, Gamazo P, 2016. Alternative method to the Clément's first demand formula for estimating the design flow rate in on-demand pressurized irrigation systems. J Irrig Drain Eng 142 (7): 1-9.

Tabesh M, Jamasb M, Moeini R, 2011. Calibration of water distribution hydraulic models: A comparison between pressure dependent and demand driven analyses. Urban Water J 8: 93-102.

Willmott CJ, 1981. On the validations models. Phys Geogr 2 (2): 184-194.

DOI: 10.5424/sjar/2017151-10144