Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

Alba Castañeda-Vera, Antonio Saa-Requejo, Inés Mínguez, Alberto Garrido

Abstract


Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.


Keywords


risk management; rainfed wheat; crop insurance penetration rate; crop models; Spain

Full Text:

PDF

References


Affholder F, Poeydebat C, Corbeels M, Scopel E, Tittonell P, 2012. The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling. Field Crop Res 143: 106-118. https://doi.org/10.1016/j.fcr.2012.10.021

Álvarez-Arias MV, Cubero-Jiménez D, Fernández-Sanchez M, Garrido-del Pozo N, Gutiérrez-García A, Nafría-García DA, Villarino-Barrera I, 2013. Atlas Agroclimático de Castilla y León. Agencia Estatal de Meteorología and Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain.

Atwood J, Shaik S, Watts M, 2003. Are crop yields normally distributed? A reexamination. Am J Agric Econ 85: 888-901. https://doi.org/10.1111/1467-8276.00495

Babcock BA, Hart CE, 2005. Influence of the premium subsidy on farmers´crop insurance coverage decisions. CARD Working Papers No. 05-WP 393, Ames, IA, USA.

Bannayan M, Crout NMJ, Hoogenboom G, 2003. Application of the CERES-Wheat Model for Within-Season Prediction of Winter Wheat Yield in the United Kingdom. Agron 95: 114-125. https://doi.org/10.2134/agronj2003.0114

BOE, 2013. Ministerial Order AAA/1629/2013, that defines the insurable goods and yields, minimal crop technical conditions, scope of application, guarantee periods, suscription dates and unitary prices for increasing ceverage insurance for the Plan 2013 de Seguros Agrarios Combinados. Boletín Oficial del Estado [España] No. 217, 02.09.2013.

Boogaard H, Wolf J, Supit I, Niemeyer S, van Ittersum M, 2013. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop Res 143: 130-142. https://doi.org/10.1016/j.fcr.2012.11.005

Cabas JH, Leiva AJ, Weersink A, 2008. Modeling exit and entry of farmers in a crop insurance program. Agr Resour Econ Rev 1: 92-105. https://doi.org/10.1017/S1068280500002173

Castañeda-Vera A, Leffelaar PA, Álvaro-Fuentes J, Cantero-Martínez C, Mínguez MI, 2015. Selecting crop models for decision making in wheat insurance. Eur J Agron 68: 97-116. https://doi.org/10.1016/j.eja.2015.04.008

Cattell RB, 1966. The scree test for the number of factors. Multivar Behav Res 1: 245-276. https://doi.org/10.1207/s15327906mbr0102_10

Claassen R, Lubowski RN, Roberts MJ, 2005. Extent, location and characteristics of land cropped due to insurance subsidies. Am Agr Econ Assoc Annual Meeting. Providence, RI, USA, p. 27.

Coble KH, Knight TO, Pope RD, Williams JR, 1997. An expected-indemnity approach to the measurement of moral hazard in crop insurance. Am J Agric Econ 79: 216-226. https://doi.org/10.2307/1243955

Enjolras G, Capitanio F, Aubert M, Adinolfi F, 2014. Direct payments, crop insurance and the volatility of farm income: some evidence in France and in Italy, New Medit 13 (1): 31-40.

ESYRCE, 2013. Encuesta sobre superficies y rendimientos de cultivo. Madrid.

Eurostat, 2013. Agriculture, forestry and fishery statistics. Luxemburg.

Gallagher P, 1987. U.S. soybean yields: Estimation and forecasting with nonsymmetric disturbances. Am J Agric Econ 69: 796-803. https://doi.org/10.2307/1242190

Garrido A, Zilberman D, 2008. Revisiting the demand of agricultural insurance: The case of Spain. Agric Financ Rev 68: 43-66. https://doi.org/10.1108/00214660880001218

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C, 2010. Food Security : The Challenge of feeding 9 billion people. Science 327: 812-818. https://doi.org/10.1126/science.1185383

Godwin D, Ritchie J, Singh U, Hunt L, 1989. A User's Guide to CERES Wheat, V2.10. Alabama.

Goodwin BK, 1994. Premium rate determination in the Federal Crop Insurance Program: What do averages have to say about risk? J Agric Resour Econ 19: 382-395.

Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso JL, White JW, Uryasev, et al., 2012. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM].

JCyL, 2014. Anuario de estadística agraria de Castilla y León. http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100/1284228463984/_/_/

Jones J, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L, Wilkens P, Singh U, Gijsman A, Ritchie J, 2003. The DSSAT cropping system model. Eur J Agron 18: 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7

Kaiser HB, 1974. An index of factor simplicity. Psychometrika 39: 31-36. https://doi.org/10.1007/BF02291575

Lobell DB, Cassman KG, Field CB, 2009. Crop yield gaps : Their importance, magnitudes, and causes. Annu Rev Environ Resour 34: 179-204. https://doi.org/10.1146/annurev.environ.041008.093740

MAGRAMA, 2014. Metodología de la encuesta anual sobre superficies y rendimientos de cultivos en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

Mahul O, Stutley CJ, 2010. Government support to agricultural insurance. Challenges and options for developing countries. World Bank. © World Bank. License: CC BY 3.0 IGO. https://openknowledge.worldbank.org/handle/10986/2432

Nelson CH, Preckel PV, 1989. The conditional beta distribution as a stochastic production function. Am J Agric Econ 71: 370-378. https://doi.org/10.2307/1241595

Niewuwoudt WL, Johnson SR, Womack AW, Bullock JB, 1985. The demand of crop insurance. Agricultural Economics Report No. 1985-16.

Palisade Corp., 2011. @RISK: A Hands-On Tutorial. http://risk.jifsan.umd.edu/files/2013/07/RISKTutorial_ExpertsCorner.pdf

Santeramo FG, Goodwin BK, Adinolfi F, Capitanio F, 2016. Farmer participation, entry and exit decisions in the Italian crop insurance program. J Agr Econ 67 (3): 639-657. https://doi.org/10.1111/1477-9552.12155

Shaik S, Coble KH, Knight TO, Baquet AE, Patrick GF, 2008. Crop revenue and yield insurance demand : A subjective probability approach. J Agr Appl Econ 40 (3): 757-766. https://doi.org/10.1017/S1074070800002303

Sherrick BJ, Zanini FC, Schnitkey GD, Irwin SH, 2004. Crop insurance valuation under alternative yield distributions. Am J Agric Econ 86: 406-419. https://doi.org/10.1111/j.0092-5853.2004.00587.x

StataCorp, 2011. Stata Statistical Software: Release 12. StataCorp LP, College Station, TX, USA.

Thornthwaite CW, 1948. An approach toward a rational classification of climate. Geogr Rev 38: 55-94. https://doi.org/10.2307/210739

Tolhurst T, Ker A, 2015. On technological change in crop yields. Am J Agric Econ 97: 137-158. https://doi.org/10.1093/ajae/aau082

van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z, 2013. Yield gap analysis with local to global relevance. A review. Field Crop Res 143: 4-17. https://doi.org/10.1016/j.fcr.2012.09.009

van Wart J, Kersebaum KC, Peng S, Milner M, Cassman KG, 2013. Estimating crop yield potential at regional to national scales. Field Crop Res 143: 34-43. https://doi.org/10.1016/j.fcr.2012.11.018

Zhao H, Gao G, Yan X, Zhang Q, Hou M, Zhu Y, Tian Z, 2011. Risk assessment of agricultural drought using the CERES-Wheat model: A case study of Henan Plain, China. Clim Res 50: 247-256. https://doi.org/10.3354/cr01060




DOI: 10.5424/sjar/2017154-10716