Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts

  • Gabriela R. Teresani Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. 46113 Moncada, Valencia, Spain. APTA-IAC, C.P.D. Fitossanidade, 13020-902, Campinas, Brazil
  • Estrella Hernández Instituto Canario de Investigaciones Agrarias (ICIA), Dept. Protección Vegetal. 38270. La Laguna, Tenerife
  • Edson Bertolini Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. 46113 Moncada, Valencia, Spain Universidade Federal do Rio Grande do Sul (UFRGS). Faculdade de Agronomia. Dept. Fitossanidade. Avda. Bento Gonçalves 7712. 91540-000 Porto Alegre
  • Felipe Siverio Instituto Canario de Investigaciones Agrarias (ICIA), Dept. Protección Vegetal. 38270. La Laguna, Tenerife
  • Aranzazu Moreno Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Agrarias. Serrano, 115 Dpdo. 28006 Madrid
  • Alberto Fereres Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Agrarias. Serrano, 115 Dpdo. 28006 Madrid
  • Mariano Cambra Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. 46113 Moncada, Valencia
Keywords: electrical penetration graph, haplotype E, psyllids, real-time PCR, transovarial passage

Abstract

The bacterium ‘Candidatus Liberibacter solanacearum’ is a recent plant pathogen of several crops in Solanaceae and Apiaceae and is associated with economically important diseases. The bacterium is a carrot seed borne pathogen that can also be transmitted from potato mother tubers and by psyllid vectors. The psyllid Bactericera trigonica Hodkinson was described carrying CaLso associated with vegetative disorders in carrot and celery crops in Spain and its competence to transmit this phloem-limited bacterium among vegetables is currently being investigated. Here electrical penetration graphs showed that B. trigonica fed in the phloem of carrot and celery and probed the phloem in potato, but not in tomato plants. The bacterium was efficiently transmitted to carrot and celery plants when either single B. trigonica or groups of ten fed on these species. An inoculation access period of 24 hours was sufficient for a single B. trigonica to transmit the bacterium to carrot (67.8%), celery (21.1%) and eventually to potato and tomato (6.0%). Higher transmission rates were obtained with 10 individuals on celery (100%), carrot (80%), potato (10%) and tomato (10%). Bactericera trigonica laid eggs, and the hatched nymphs develop into adult on carrot and celery, but not on potato and tomato. CaLso was detected in 20% of the eggs laid by females carrying the bacterium. The results confirmed that B. trigonica is a vector of the bacterium to carrot and celery, and it is discussed the potential role of this psyllid in the transmission of the pathogen to potato and tomato plants.

Downloads

Download data is not yet available.

References

Alfaro-Fernández A, Siverio F, Cebrián MC, Villaescusa FJ, Font MI, 2012. 'Candidatus Liberibacter solanacearum' associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Dis 96: 581. https://doi.org/10.1094/PDIS-10-11-0878-PDN

Antolínez CA, Fereres A, Moreno A, 2017a. Sex-specific probing behaviour of the carrot psyllid Bactericera trigonica and its implication in the transmission of "Candidatus Liberibacter solanacearum." Eur J Plant Pathol 147: 627-637. https://doi.org/10.1007/s10658-016-1031-6

Antolínez CA, Fereres A, Moreno A, 2017b. Risk assessment of 'Candidatus Liberibacter solanacearum' transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci Rep 7: 45534. https://doi.org/10.1038/srep45534

Antolínez CA, Moreno A, Appezzato-da-Gloria B, Fereres A, 2017c. Characterization of the electrical penetration graphs of the psyllid Bactericera trigonica on carrots. Entomol Exp Appl 163 (2): 127-139. https://doi.org/10.1111/eea.12565

Backus EA, Cline AR, Ellerseick MR, Serrano MS, 2007. Lygus Hesperus (Hemiptera: Miridae) feeding on cotton: new methods and parameters for analysis of non-sequential electrical penetration graph data. Ann Entol Soc Am 100: 296-310. https://doi.org/10.1603/0013-8746(2007)100[296:LHHMFO]2.0.CO;2

Bertolini E, Teresani GR, Loiseau M, Tanaka FAO, Barbé S, Martínez C, Gentit P, López MM, Cambra M, 2014. Transmission of 'Candidatus Liberibacter solanacearum' in carrot seeds. Plant Pathol 64: 276-285. https://doi.org/10.1111/ppa.12245

Blanc S, Drucker M, Uzest M, 2014. Localizing viruses in their insect vectors. Annu Rev Phytopathol 52: 403-425. https://doi.org/10.1146/annurev-phyto-102313-045920

Bonani JP, Fereres A, Garzo E, Miranda MP, Appezzato-Da-Gloria B, Lopes JRS, 2010. Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomol Exp Appl 134: 35-49. https://doi.org/10.1111/j.1570-7458.2009.00937.x

Butler CD, Walker GP, Trumble JT, 2012. Feeding disruption of potato psyllid, Bactericera cockerelli, by imidacloprid as measured by electrical penetration graphs. Entomol Exp Appl 142: 247-257. https://doi.org/10.1111/j.1570-7458.2012.01219.x

Cen Y, Gao J, Deng X, Xia Y, Chen, J, Zhang L, Guo J, Gao W, Zhou W, Wang Z, 2012a. A new insect vector of 'Candidatus Liberibacter asiaticus', Cacopsylla (Psylla) citrisuga (Hemiptera:Psyllidae). Proc Intl Citrus Congress. Valencia, Spain, p. 194.

Cen YJ, Yang CL, Holford P, Beattie GAC, Spooner-Hart RN, Liang GW, Deng XL, 2012b. Feeding behaviour of the Asiatic citrus psyllid, Diaphorina citri, on healthy and huanglongbing-infected citrus. Entomol Exp Appl 143: 13-22. https://doi.org/10.1111/j.1570-7458.2012.01222.x

Civolani S, Leis M, Grandi G, Garzo E, Pasqualini E, Musacchi S, Chicca M, Castaldelli G, Rossi R, Tjallingii WF, 2011. Stylet penetration of Cacopsylla pyri: An electrical penetration graph (EPG) study. J Insect Physiol 57: 1407-1419. https://doi.org/10.1016/j.jinsphys.2011.07.008

Cooper WR, Sengoda VG, Munyaneza JE, 2014. Localization of 'Candidatus Liberibacter solanacearum' (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae). Ann Entol Soc Am 107: 204-210. https://doi.org/10.1603/AN13087

Donovan NJ, Beattie GAC, Chambers GA, Holford P, Englezou A, Hardy S, Dorjee, Wangdi Phuntsho, Thinlay, Om Namgay, 2012. First report of 'Candidatus Liberibacter asiaticus' in Diaphorina communis. Australas Plant Dis Notes 7: 1-4. https://doi.org/10.1007/s13314-011-0031-9

EPPO, 2006. Phytosanitary procedures. Post-entry quarantine for potato. PM 3/21 (2).

Haapalainen M, 2014. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. An Appl Biol 165: 172-198. https://doi.org/10.1111/aab.12149

Hall DG, Richardson ML, Ammar ED, Halbert SE, 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 146: 207-223. https://doi.org/10.1111/eea.12025

Hansen AK, Trumble JT, Stouthamer R, Paine TD, 2008. New Huanglongbing (HLB) Candidatus species, "Ca. Liberibacter psyllarous" found to infect tomato and potato is vectored by the psyllid Bactericera cockerelli. Appl Environ Microb 73: 7531-7535. https://doi.org/10.1128/AEM.01672-07

Hodkinson ID, 2009. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): A global synthesis. J Nat Hist 43: 65-179. https://doi.org/10.1080/00222930802354167

Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG, 2008. Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46: 327-359. https://doi.org/10.1146/annurev.phyto.022508.092135

Hung TH, Hung SC, Chen CN, Hsu MH, Su HJ, 2004. Detection by PCR of Candidatus Liberibacter asiaticus, the bacterium causing citrus Huanglongbing in vector psyllids: Application to the study of vector - pathogen relationships. Plant Pathol 53: 96-102. https://doi.org/10.1111/j.1365-3059.2004.00948.x

Irwin ME, Kampmeier GE, Weisser WW, 2007. Aphids as crop pests. In: Aphid movement: Process and consequences; Van Emden HF & Harrington R. (eds). pp: 153-186. CABI Publ, Wallingford.

Jeger MJ, Holt J, Van Den Bosch F, Madden LV, 2004. Epidemiology of insect-transmitted plant viruses: Modelling disease dynamics and control interventions. Physiol Entomol 29: 291-304. https://doi.org/10.1111/j.0307-6962.2004.00394.x

Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG, 2009. A new 'Candidatus Liberibacter' species associated with diseases of solanaceous crops. Plant Dis 93: 208-214. https://doi.org/10.1094/PDIS-93-3-0208

Mann RS, Pelz-Stelinski K, Hermann SL, Tiwari S, Stelinski LL, 2011. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between con-specific insect vectors during mating. PLoS ONE 6: e29197. https://doi.org/10.1371/journal.pone.0029197

Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A, 2010. Association of "Candidatus Liberibacter solanacearum" with the psyllid Trioza apicalis (Hemiptera:Triozidae) in Europe. J Econ Entomol 103: 1060-1070. https://doi.org/10.1603/EC10027

Munyaneza JE, Mustafa T, Fisher TW, Sengoda VG, Horton DR, 2016. Assessing the likelihood of transmission of Candidatus Liberibacter solanacearum to carrot by potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 11(8): e0161016. https://doi.org/10.1371/journal.pone.0161016

Murray MG, Thompson WF, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325. https://doi.org/10.1093/nar/8.19.4321

Mustafa T, Horton DR, Cooper WR, Swisher KD, Zack RS, Pappu HR, Munyaneza JE, 2015. Use of electrical penetration graph technology to examine transmission of 'Candidatus Liberibacter solanacearum' to potato by three haplotypes of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae). PLoS ONE 10 (9): e0138946. https://doi.org/10.1371/journal.pone.0138946

Nissinen AI, Haapalainen M, Jauhiainen L, Lindman M, Pirhonen M, 2014. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by 'Candidatus Liberibacter solanacearum'. Plant Pathol 63: 812-820. https://doi.org/10.1111/ppa.12144

Pearson CC, Backus EA, Shugart HJ, Munyaneza JE, 2014. Characterization and correlation of EPG waveforms of Bactericera cockerelli (Hemiptera: Triozidae): Variability in waveform appearance in relation to applied signal. Ann Entol Soc Am 107: 650-666. https://doi.org/10.1603/AN13178

Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME, 2010. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J Econ Entomol 103: 1531-1541. https://doi.org/10.1603/EC10123

Pitman AR, Drayton GM, Kraberger SJ, Genet RA, Scott IAW, 2011. Tuber transmission of 'Candidatus Liberibacter solanacearum' and its association with zebra chip on potato in New Zealand. Eur J Plant Pathol 129: 389-398. https://doi.org/10.1007/s10658-010-9702-1

Sandanayaka WRM, Moreno A, Tooman LK, Page-Weir NEM, Fereres A, 2014. Stylet penetration activities linked to the acquisition and inoculation of Candidatus Liberibacter solanacearum by its vector tomato potato psyllid. Entomol Exp Appl 151: 170-181. https://doi.org/10.1111/eea.12179

Sarriá E, Cid M, Garzo E, Fereres A, 2009. Workbook for automatic parameter calculation of EPG data. Comput Electron Agr 67: 35-42. https://doi.org/10.1016/j.compag.2009.02.006

Secor GA, Rivera VV, Abad JA, Lee IM, Clover GRG, Liefting LW, Li X, De Boer SH, 2009. Association of 'Candidatus Liberibacter solanacearum' with the zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Dis 93: 574-583. https://doi.org/10.1094/PDIS-93-6-0574

Sengoda VG, Cooper WR, Swisher KD, Henne DC, Munyaneza JE, 2014. Latent period and transmission of "Candidatus Liberibacter solanacearum" by the potato psyllid Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 9: e93475. https://doi.org/10.1371/journal.pone.0093475

Teresani GR, Bertolini E, Alfaro-Fernández A, Martínez C, Tanaka FAO, Kitajima EW, Roselló M, Sanjuán S, Ferrándiz JC, López MM, Cambra M, Font MI, 2014. Association of 'Candidatus Liberibacter solanacearum' with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104: 804-811. https://doi.org/10.1094/PHYTO-07-13-0182-R

Teresani GR, Hernández E, Bertolini E, Siverio F, Marroquín C, Molina J, Hermoso de Mendoza A, Cambra M, 2015. The search for potential vectors of 'Candidatus Liberibacter solanacearum': Population dynamics in host crops. Span J Agric Res 13: e10-002. https://doi.org/10.5424/sjar/2015131-6551

Tjallingii WF, 1985. Electrical nature of recorded signals during stylet penetration by aphids. Entomol Exp Appl 38: 177-186. https://doi.org/10.1111/j.1570-7458.1985.tb03516.x

Ullman DE, McLean DL, 1988. The probing behavior of the summer-form pear psylla. Entomol Exp Appl 47: 115-125. https://doi.org/10.1111/j.1570-7458.1988.tb01126.x

Published
2018-02-07
How to Cite
Teresani, G. R., Hernández, E., Bertolini, E., Siverio, F., Moreno, A., Fereres, A., & Cambra, M. (2018). Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Spanish Journal of Agricultural Research, 15(4), e1011. https://doi.org/10.5424/sjar/2017154-10762
Section
Plant protection