Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

Paloma Manzanares, Encarnación Ruiz, Mercedes Ballesteros, María J. Negro, Francisco J. Gallego, Juan C. López-Linares, Eulogio Castro

Abstract


Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

Keywords


extracted olive pomace; olive leaves; olive tree pruning biomass; production yield; bioeconomy; lignocellulose

Full Text:

PDF

References


Alexandri M, Papapostolou H, Komaitis M, Stragier L, Verstraete W, Danezis GP, Georgiou CA, Papanikolaou S, Koutinas AA, 2016. Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid. Bioresour Technol 214: 504-513. https://doi.org/10.1016/j.biortech.2016.03.162

Aparicio J, Monge JF, Ortiz L, Pastor JT, 2016. Changes in productivity in the virgin olive oil sector: An application to Protected Designations of Origin in Spain. Span J Agric Res 14 (3): e0104. https://doi.org/10.5424/sjar/2016143-9433

Borja R, Raposo F, Rincón B, 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas y Aceites 57: 32-46. https://doi.org/10.3989/gya.2006.v57.i1.20

Cai Z, Dong Y, Wang C, Chen P, Li P, Qin Z, Wang T, 2016. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process. Bioresour Technol 211: 677-684. https://doi.org/10.1016/j.biortech.2016.03.159

Calatrava J, Franco JA, 2011. Using pruning residues as mulch: Analysis of its adoption and process of diffusion in Southern Spain olive orchards. J Environ Manage 92: 620-629. https://doi.org/10.1016/j.jenvman.2010.09.023

Cara C, Ruiz E, Carvalherio F, Moura P, Ballesteros I, Castro E, Girio F, 2012. Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crops Prod 40: 225-231. https://doi.org/10.1016/j.indcrop.2012.03.017

Conde E, Cara C, Moure A, Ruiz E, Castro E, Domínguez H, 2009. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114: 806-812. https://doi.org/10.1016/j.foodchem.2008.10.017

Cruz-Peragón F, Palomar JM, Ortega A, 2006. Ciclo energético integral del sector oleícola de Jaén (España). Grasas y Aceites 57: 219-228.

Díaz MJ, Cara C, Ruiz E, Romero I, Castro E, 2012. Olive tree pruning as an agricultural residue for ethanol production. Fermentation of hydrolysates from dilute acid pretreatment. Span J Agric Res 10: 643-648. https://doi.org/10.5424/sjar/2012103-2631

EN 15104, 2011. Determination of total content of carbon, hydrogen and nitrogen -Instrumental methods. European Committee for Standardization.

EN 15289, 2011. Solid biofuels - Determination of total content of sulfur and chlorine. European Committee for Standardization.

Estornell-Cremades J, Ruiz-Fernández LÁ, Velázquez-Martí B, López-Cortés I, Salazar-Hernández DM, Fernández-Sarriá A, 2015. Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass Bioenerg 81: 315-321. https://doi.org/10.1016/j.biombioe.2015.07.015

Fernandez-Bolaños J, Heredia-Moreno A, Felizón-Becerra B, Guillen-Bejarano R, Jiménez-Araujo A, Rodriguez-Arcos R, 2000. Procedimiento de obtención de manitol a partir de pulpa extractada de aceitunas. Patente española ES 2 143 939 A1.

Fernández-Bolaños J, Rodríguez-Gutiérrez G, Lama-Muñoz A, Rubio-Senent F, Fernandez-Bolaños Guzmán JM, Maya I, López-López Ó, Marset-Castro A, 2013. Procedimiento para la obtención de extracto de hidroxitirosol, extracto mezcla de hidroxitirosol y 3, 4-dihidroxifenilglicol, y extracto de acetato de hidroxitirosilo, a partir de subproductos del olivo y su purificación. Spanish patent. Publication number ES 2 395 317 B1. Patent WO 2013007850 A1.

Fernández-Rodríguez J, Gordobil O, Robles E, González-Alriols M, Labidi J, 2017. Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. J Cleaner Prod 142: 2609-2617. https://doi.org/10.1016/j.jclepro.2016.10.198

FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, 2010. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101: 8915-8922. https://doi.org/10.1016/j.biortech.2010.06.125

González-García S, Gullón B, Rivas S, Feijoo G, Moreira MT, 2016. Environmental performance of biomass refining into high-added value compounds. J Cleaner Prod 120: 170-180. https://doi.org/10.1016/j.jclepro.2016.02.015

Huang C, Jeuck B, Du J, Yong Q, Chang H, Jameel H, Phillips R, 2016. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood. Bioresour Technol 219: 600-607. https://doi.org/10.1016/j.biortech.2016.08.051

Junta de Andalucía, 2010. Potencial energético de los subproductos de la industria olivarera en Andalucía. Secretaría General del Medio Rural y la Producción Ecológica. Consejería de Agricultura y Pesca. 70 pp.

Junta de Andalucía, 2015. La biomasa en Andalucía. Agencia Andaluza de la Energía. Consejería de Empleo, Empresa y Comercio. 41 pp.

La Cal JA, Jurado F, Ogayar B, 2012. A new model of energy valorization for olive grove by-products based on the gasification technology integrated in an olive-oil mill. Int J Green Energy 9: 661-672. https://doi.org/10.1080/15435075.2011.625588

MAPAMA. Anuario de Estadística Agroalimentaria 2014. Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España. http://www.mapama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2014/default.aspx.

Negro MJ, Manzanares P, Ruiz E, Castro E, Ballesteros M, 2016. The biorefinery concept for the industrial valorization of residues from olive oil industry. In: Olive mill wastewater: Recent advances for the sustainable management of olive oil industry. Galanakis CM (ed). Elsevier, Amsterdam.

Rahmaniana N, Jafaric SM, Wani TA, 2015. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci Technol 42: 150-172. https://doi.org/10.1016/j.tifs.2014.12.009

Rodríguez-Lizana A, Pereira MJ, Ribeiro MC, Soares A, Márquez-García F, Ramos A, Gil-Ribes J, 2017. Assessing soil protection uncertainty through stochastic simulations. Land Degrad Develop "in press" doi: 10.1002/ldr.2734 https://doi.org/10.1002/ldr.2734

Romero-García JM, Niño L, Martinez-Patiño C, Alvarez C, Castro E, Negro MJ, 2014. Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159: 421-432. https://doi.org/10.1016/j.biortech.2014.03.062

Romero-García JM, Lama-Muñoz A, Rodríguez-Gutiérrez G, Moya M, Ruiz M, Fernández-Bolaños J, Castro E, 2016. Obtaining sugars and natural antioxidants from olive leaves by steam-explosion. Food Chem 210: 457-465. https://doi.org/10.1016/j.foodchem.2016.05.003

Searcy E, Flynn P, Ghafoori E, Kumar A, 2007. The relative cost of biomass energy transport. Appl Biochem Biotechnol 137-140 (1-12): 639-652.

Singleton VL, Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.

Slutier JB, Ruiz RO, Scarlata CJ, Slutier AD, Templeton DW, 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58: 9043-9053. https://doi.org/10.1021/jf1008023

Terrados J, Ruiz-Arias JA, Hontoria L, Almonacid G, Pérez PJ, Pozo-Vázquez D, Gallego FJ, Gómez P, Castro E, Martín-Mesa A, del Jesús MJ, 2011. The Mágina Project. The renewables potential for electricity production in the province of Jaén, southern Spain. World Renewable Energy Congress. Linköping University Electronic Press, Sweden. 4240 pp.

Toledano A, Serrano L, Labidi J, 2011. Enhancement of lignin production from olive tree pruning integrated in a green biorefinery. Ind Eng Chem Res 50: 6573-6579. https://doi.org/10.1021/ie102142f




DOI: 10.5424/sjar/2017153-10868