Fatty acid profile as a tool to trace the origin of beef in pasture- and grain-fed young bulls of Retinta breed

Alberto Horcada, Adoración López, Oliva Polvillo, Rafael Pino, Dolores Cubiles-de-la-Vega, David Tejerina, Susana García-Torres

Abstract


This research explores the possibility of using the fatty acid profiles of intramuscular fat to authenticate the origin of Retinta breed meat according to different feeding regimes based on the combined use of concentrate and grass or forage (GP, grass pasture; MC, medium concentrate; HC, high concentrate). Young bulls from GP (n=30) were reared on grass pasture and supplement with concentrate in controlled feeders; MC (n=30) and HC (n=15) were reared in farm buildings using 40 and 80% concentrate of total dry matter from diet, respectively. The stepclass function in R was used to perform a stepwise linear discriminant analysis including thirty fatty acids from intramuscular fat. Two fatty acids, 9c18:1 and 22:5 n-3 were selected as discriminators of the meat origin. Meat from the GP and MC was characterized by higher 22:5 n-3 (p<0.05), while HC meat showed higher 9c18:1 (p<0.05). The use of 9c18:1 and 22:5 n-3 fatty acids from intramuscular fat resulted in a correct assignation of 100% of beef samples to each of the feeding regimes. Therefore, in addition to serving as an effective tool for discriminating between feeding regimes in the origin of the beef, the fatty acid profile of intramuscular fat could help companies to check the authenticity of the meat origin.


Keywords


pasture; concentrate supplement; discriminant analysis; gas chromatography

Full Text:

PDF

References


Albertí P, Beriain MJ, Ripoll G, Sarriés V, Panea B, Mendizábal JA, Purroy A, Olleta JL, Sañudo C, 2014. Effect of including linseed in a concentrate fed to young bulls on intramuscular fatty acids and beef colour. Meat Sci 96: 1258-1265. https://doi.org/10.1016/j.meatsci.2013.11.009

Aldai N, Lavín P, Kramer JK, Jaroso R, Mantecón A, 2012. Breed effect on quality veal production in mountain areas: emphasis on meat fatty acid composition. Meat Sci 92: 687-696. https://doi.org/10.1016/j.meatsci.2012.06.024

Alfaia CP, Alves SP, Martins SI, Costa AS, Fontes CM, Lemos JP, Bessa RJ, Prates JA, 2009. Effect of the feeding system on intramuscular fatty acid and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem 114: 939-946. https://doi.org/10.1016/j.foodchem.2008.10.041

Calder PC, 2004. N-3 fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci 107: 1-11. https://doi.org/10.1042/CS20040119

Corazzin M, Bovolenta S, Sacca E, Bianchi G, Piasentier E, 2013. Effect of linseed addition on the expression of some lipid metabolism genes in the adipose tissue of young Italian Simmental and Holstein bulls. J Anim Sci 91: 405-412. https://doi.org/10.2527/jas.2011-5057

Daley C, Abbott A, Doyle P, Nader G, Larson S, 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J 9 (1): 10. https://doi.org/10.1186/1475-2891-9-10

De Blas C, Mateos GG, García-Rebollar P, 2010. Tablas de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos (3th ed.). Fundación Española para el Desarrollo de la Nutrición Animal (Eds.), Madrid, Spain.

Dervishi E, Serrano C, Joy M, Serrano M, Rodellar C, Calvo J, 2011. The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep. Meat Sci 89: 91-97. https://doi.org/10.1016/j.meatsci.2011.04.003

Dias LG, Correia DM, Sá-Morais J, Sousa F, Pires JM, Peres, AM, 2008. Raw bovine meat fatty acids profile as an origin discriminator. Food Chem 109: 840-847. https://doi.org/10.1016/j.foodchem.2008.01.008

Dilzer A, Park Y, 2012. Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci 52 (6): 488-513. https://doi.org/10.1080/10408398.2010.501409

EC, 2009. Council Regulation 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Official Journal of the European Union, L 303: 1-30.

Fernández Cabanás V, Polvillo O, Rodríguez-Acuña R, Botella B, Horcada A, 2011. Rapid determination of the fatty acid profile in pork dry-cured sausages by NIR spectroscopy. Food Chem 124: 373-378. https://doi.org/10.1016/j.foodchem.2010.06.031

Folch J, Less M, Sloane GH, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.

French P, Stanton C, Lawless F, O'Riordan EG, Monahan FJ, Caffey PJ, Moloney, AP, 2000. Fatty acid composition, including conjugated linoleic acid of intramuscular fat from steers offered grazed grass, grass silage or concentrate-based diets. J. Anim Sci 78: 2849-2855. https://doi.org/10.2527/2000.78112849x

French P, O'Riordan EG, Monahan FJ, Caffrey PJ, Moloney AP, 2003. Fatty acid composition of intramuscular triacylglycerols of steers fed autumn grass and concentrates. Livest Prod Sci 81: 307-317. https://doi.org/10.1016/S0301-6226(02)00253-1

García PT, Pensel NA, Sancho AM, Latimori NJ, Kloster AM, Amigore MA, Casal JJ, 2008. Beef lipids in relation to animal breed and nutrition in Argentine. Meat Sci 79: 500-508. https://doi.org/10.1016/j.meatsci.2007.10.019

Hiller B, Herdmann A, Nuernberg K, 2011. Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue: a functional genomics approach. Lipids 46: 557-567. https://doi.org/10.1007/s11745-011-3571-z

Horcada A, Polvillo O, Juárez M, Avilés C, Martínez AL, Peña F, 2016. Influence of feeding system (concentrate and total mixed ration) on fatty acid profiles of beef from three lean cattle breeds. J Food Compos Anal 49: 110-116. https://doi.org/10.1016/j.jfca.2016.04.008

Indurain G, Beriain MJ, Goñi MV, Arana A, Purroy A, 2006. Composition and estimation of intramuscular and subcutaneous fatty acid composition in Spanish young Bulls. Meat Sci 73: 326-334. https://doi.org/10.1016/j.meatsci.2005.12.007

Juárez M, Horcada A, Alcalde MJ, Aldai N, Polvillo O, Valera M, Molina A, 2010. Fatty acid composition of lamb fat depots as an origin discriminator. Span J Agric Res 8: 976-980. https://doi.org/10.5424/sjar/2010084-1392

Kamihiro S, Stergiadis S, Leifert C, Eyre MD, Butler G, 2015. Meat quality and health implications of organic and conventional beef production. Meat Sci 100: 306-318. https://doi.org/10.1016/j.meatsci.2014.10.015

Lorenz S, 2004. Einfluss der Rasse und des Fütterungsregimes auf die Fettsäurezusammensetzung in Lipidfraktionen von Rind-fleisch-Aspekte der Humanernährung sowie der Aromabildung beim KMChen. PhD Thesis, University Munich.

Mapiye C, Vahmani P, Mlambo V, Muchenje V, Dzama K, Hoffman LC, Dugan MER, 2015. The trans-octadecenoic fatty acid profile of beef: Implications for global food and nutrition security. Food Res Int 76: 992-1000. https://doi.org/10.1016/j.foodres.2015.05.001

Martínez AL, Peña F, Avilés C, Pérez Alba L, Polvillo O, 2013. Selecting the best set of gas chromatography-derived fatty acids to discriminate between two finishing diets using linear discriminant analysis. Meat Sci 95: 173-176. https://doi.org/10.1016/j.meatsci.2013.04.059

Mellado-González T, Narváez M, Alcade MJ, Cano T, León-Camacho M, 2009. Authentication of fattening diet of goat kid according to their fatty acid profile from perirenal fat. Talanta 77: 1603-1608. https://doi.org/10.1016/j.talanta.2008.09.062

Milán MJ, Bartolomé J, Quintanilla R, García-Cachán MD, Espejo M, Herráiz PL, Sánchez-Recio JM, Piedrafita J, 2006. Structural characterisation and typology of beef cattle farms of Spanish wooded rangelands (dehesas). Livest Sci 99: 197-209. https://doi.org/10.1016/j.livprodsci.2005.06.012

Moreno T, Varela A, Oliete B, Carballo JA, Sánchez L, Monserrat L, 2006. Nutritional characteristics of veal from weaned and unweaned young bulls: discriminatory ability of the fat profile. Meat Sci 73: 209-217. https://doi.org/10.1016/j.meatsci.2005.11.016

Nuernberg K, Nuernberg G, Ender K, Lorenz S, Winkler K, Rickert R, Steinhart H, 2002. N-3 fatty acids and conjugated linoleic acids of longissimus muscle in beef cattle. Eur J Lipid Sci Tech 104: 463-471. https://doi.org/10.1002/1438-9312(200208)104:8<463::AID-EJLT463>3.0.CO;2-U

Nuernberg K, Dannenbrger D, Nuernberg G, Ender K, Voigt J, Scollan ND, Wood JD, Nute GR, Richardson RI, 2005. Effect of grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest Prod Sci 94: 137-147. https://doi.org/10.1016/j.livprodsci.2004.11.036

Ponnampalam E, Man E, Sinclair A, 2006. Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: Potential impact on human health. Asia Pac J Clin Nutr 15: 21-29.

Raes K, Balcaen A, Dirinck P, De Winne A, Caléis E, Demeyer E, De Smet D, 2003. Meat quality, fatty acid composition and flavour analysis in Belgian retail beef. Meat Sci 65: 1237-1246. https://doi.org/10.1016/S0309-1740(03)00031-7

Razminowicz RH, Kreuzer M, Scheeder MRL, 2006. Quality of retail beef from two grass-based production systems in comparison with conventional beef. Meat Sci 73: 351-361. https://doi.org/10.1016/j.meatsci.2005.12.013

Ripoll G, Albertí P, Álvarez-Rodriguez J, Blasco I, Sanz A, 2016. Body size, carcass and meat quality of three commercial beef categories of "Serrana de Teruel" breed. Span J Agric Res 14: 1-13. https://doi.org/10.5424/sjar/2016143-9122

Sañudo C, Enser ME, Campo MM, Nute GR, Maroña G, Sierra I, Wood JD, 2000. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci 54: 339-346. https://doi.org/10.1016/S0309-1740(99)00108-4

Simopoulos AP, 2001. N-3 fatty acids and human health: defining strategies for public policy. Lipids 36: S83-S89. https://doi.org/10.1007/s11745-001-0687-7

Średnicka-Tober D, Barański M, Seal C, Sanderson R, Benbrook C, Steinshamn H, et al., 2016. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Brit J Nutr 115: 994-1011. https://doi.org/10.1017/S0007114515005073

Turner T, Jensen J, Pilfold J, Prema D, Donkor K, Cinel B, Thompson D, Dugan M, Church J, 2015. Comparison of fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada. Can J Anim Sci 95: 49-58. https://doi.org/10.4141/cjas-2014-113

Urrutia B, Soret B, Insausti K, Mendizabal JA, Purroy A, Arana A, 2015. The effects of linseed or chia seed dietary supplementation on adipose tissue development, fatty acid composition, and lipogenic gene expression in lambs. Small Ruminant Res 123: 204-211. https://doi.org/10.1016/j.smallrumres.2014.12.008

Vatansever L, Kurt E, Enser M, Nute GR, Scollan ND, Wood JD, Richardson RI, 2000. Shelf life and eating quality of beef from cattle of different breeds given diets differing in n-3 polyunsaturated fatty acid composition. Anim Sci 71: 471- 482. https://doi.org/10.1017/S135772980005548X

Walshe BE, Sheehan EM, Delahunty CM, Morrissey PA, Ferry JP, 2006. Composition, sensory and shelf life stability analyses of Longissimus dorsi muscle from steers reared under organic and conventional production systems. Meat Sci 73: 319-325. https://doi.org/10.1016/j.meatsci.2005.12.008

Wang Y, Jacome-Sosa MM, Proctor SD, 2012. The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Res Int 46(2): 460-468. https://doi.org/10.1016/j.foodres.2011.08.019

Weihs C, Ligges U, Luebke K, Raabe N, 2005. Analyzing German business cycles. In: Data analysis and decision support; Baier D, Decker R, & Schmidt-Thieme L (eds.), pp: 335-343. Springer-Verlag, Berlin. https://doi.org/10.1007/3-540-28397-8_36

Wolfram G, 2003. Dietary fatty acids and coronary heart disease. Eur J Med Res 8: 321-324.

Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou PR, Enser M, 2004. Effects of fatty acids on meat quality: a review. Meat Sci 66: 21-32. https://doi.org/10.1016/S0309-1740(03)00022-6




DOI: 10.5424/sjar/2017154-11032