Penetration and post-infection development of root-knot nematodes in watermelon

Manuel López-Gómez, Soledad Verdejo-Lucas


Meloidogyne javanica has showed less reproductive success than M. incognita in watermelon genotypes. This study was conducted to elucidate the low reproduction of M. javanica in watermelon. The post-infection development of M. javanica in watermelon ‘Sugar Baby’ was determined at progressively higher initial population (Pi) levels at two time points during the life cycle. Plants were inoculated with 0, 25, 50, 100, 200, and 300 second-stage juveniles (J2)/plant. The increase in Pi was correlated with the penetration rates (R2= 0.603, p<0.001) and total numbers of nematodes in the root (R2 =0.963, p< 0.001) but there was no correlation between the Pi and the reproduction factor (eggs/plant/Pi). The population in the roots at 26 days post-inoculation (dpi) consisted primarily of third-stage juveniles (J3) with a small presence of J2 and fourth stages, and egg-laying females. The dominance of the J3, when egg-laying females are expected, point to the malfunction of the feeding sites that failed to support nematode development beyond the J3 stage. The similarities in egg-laying females at 26 and 60 dpi imply the disruption of the life cycle. Watermelon compensated for M. javanica parasitism by increasing vine length (19% to 33%) and dry top weight (40%) in comparison with the non-inoculated plants. The area under the vine length progress curve was significantly larger as the Pi progressively increased (=0.417, p<0.001). Physiological variation was detected between the M. incognita populations. M. arenaria had less ability to invade watermelon roots than did M. incognita and M. javanica.


Citrullus lanatus; growth stimulation; Meloidogyne arenaria; Meloidogyne incognita; Meloidogyne javanica; parasitic variation; reproduction factor

Full Text:



Abad P, Castagnone-Sereno P, Rosso MN, de Almeida Engler J, Favery B, 2009. Invasion, feeding and development. In: Root-knot nematodes; Perry RN, Moens M, Starr JL (eds), pp: 163-181. CAB Int, Wallingford, UK.

Anwar SA, McKenry MV, 2010. Reproduction of Meloidogyne incognita on vegetable crop genotypes. Pak J Zool 42: 135-141.

Bridge J, Page LJ, 1982. The rice root-knot nematode, Meloidogyne graminicola, on deep water rice (Oryza sativa subsp. indica). Rev Nématol 5: 225-232.

Cohen R, Tyutyunik J, Fallik E, Oka Y, Tadmor Y, Edelstein M, 2014. Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Sci Hort 165: 203-210.

Davis RF, 2007. Effect of Meloidogyne incognita on watermelon yield. Nematropica 37: 287-293.

Edelstein M, Oka Y, Burguer Y, Eizenberg H, Cohen R. 2010. Variation in the response of cucurbits to Meloidogyne incognita and M. javanica. Isr J Plant Sci 58: 77-84.

Escobar C, Barcala M, Cabrera J, Fenoll C, 2015. Overview of root-knot nematodes and giant cells. Plant nematode interactions: A view on compatible interrelationships. Adv Bot Res 73: 1-32.

Faske TR, 2013. Penetration, post-penetration development, and reproduction of Meloidogyne incognita on Cucumis melo var. texanus. J Nematol 45: 58-65.

Gholizadeh A, Amin MSM, Anuar AR, Aimrun W, 2009. Evaluation of leaf total nitrogen content for nitrogen management in a Malaysian paddy field by using soil plant analysis development chlorophyll meter. Am Agric Biol Sci 4: 278-282.

Giné A, López-Gómez M, Vela MD, Ornat C, Talavera M, Verdejo-Lucas S, Sorribas FJ, 2014. Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathol 63: 1446-1453.

Hussey RS, Barker KR, 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57: 1025-1028.

López-Gómez M, Verdejo-Lucas S, 2014. Penetration and reproduction of root-knot nematodes on cucurbit species. Eur J Plant Pathol 138: 863-871.

López-Gómez M, Giné A, Vela MD, Ornat C, Sorribas FJ, Talavera M, Verdejo-Lucas S, 2014. Damage functions and thermal requirements of Meloidogyne javanica and M. incognita on watermelon. Ann Appl Biol 165: 466-473.

López-Gómez M, Flor-Peregrín E., Talavera M., Verdejo-Lucas S, 2015. Suitability of zucchini and cucumber genotypes to populations of Meloidogyne arenaria, M. incognita and M. javanica. J Nematol 47: 79-85.

López-Gómez M, Talavera M, Verdejo-Lucas S, 2016. Differential reproduction of Meloidogyne incognita and M. javanica in watermelon cultivars and cucurbit rootstocks. Plant Pathol 65: 145-153.

Loveys BR, Bird AF, 1973. The influence of nematodes on photosynthesis in tomato plants. Physiol Plant Pathol 3: 525-529.

Melakeberhan H, Webster JM, Brooke RC, 1985. Response of Phaseolus vulgaris to a single generation of Meloidogyne incognita. Nematologica 31: 190-202.

Montalvo AE, Esnard J, 1994. Reaction of ten cultivars of watermelon (Citrullus lanatus) to a Puerto Rican population of Meloidogyne incognita. J Nematol 26: 640-643.

Omwega C, Thomason IJ, Roberts PA, 1988. A non-destructive technique for screening bean germplasm for resistance to Meloidogyne incognita. Plant Dis 72: 970-972.

Pofu KM, Mashela PW, Mphosi MS, 2011. Management of Meloidogyne incognita in nematode susceptible watermelon cultivars using nematode resistant Cucumis africanus and Cucumis myriocarpus rootstocks. Afr J Biotechnol 10: 8790-8793.

Pôrto ML, Puiatti M, Fontes PCR, Cecon PC, Alves JC, Arruda JA, 2011. Índice SPAD para o diagnóstico do estado de nitrogênio na cultura da abobrinha. Hort Bras 29: 311-315.

Seinhorst JW, 1967. Relationships between population increase and population density in plant parasitic nematodes. III. Definition of terms host, host status and resistance. IV. Influence of external conditions on regulation of population density. Nematologica 13: 429-442.

Stephan ZA, Trudgill DL, 1982. Development of four populations of Meloidogyne hapla on two cultivars of cucumber at different temperatures. J Nematol 14: 545-549.

Thies JA, Levi A, 2003. Resistance of watermelon germplasm to the peanut root-knot nematode. HortScience 38: 1417-1421.

Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A, 2010. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94: 1195-1159.

Thies JA, Ariss JJ, Hassell RL, Buckner S, Levi A, 2015. Accessions of Citrullus lanatus var. citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience 50: 4-8.

Trudgill DL, 1995. An assessment of the relevance of thermal time relationships to nematology. Fundam Appl Nematol 18: 407-417.

Vawdrey LL, Stirling GR, 1996. The use of tolerance and modification of planting times to reduce damage caused by root-knot nematodes (Meloidogyne spp.) in vegetable cropping systems at Bundaberg, Queensland. Aust Plant Pathol 25: 240-246.

Verdejo-Lucas S, Talavera M, Andrés MF, 2012. Virulence response to the Mi.1 gene of Meloidogyne populations from tomato in greenhouses. Crop Prot 39: 97-105.

Wagner A, Michalek W, Jamiolkowka A, 2006. Chlorophyll fluorescence measurements as indicators of fusariosis severity in tomato plants. Agron Res 4: 461-464.

Wallace HR, 1971. The influence of the density of the nematode on the plants. Nematologica 17: 154-166.

Winstead NN, Riggs RD, 1959. Reaction of watermelon varieties to root-knot nematodes. Plant Dis Rep 43: 909-912.

Xing L, Westphal A, 2012. Predicting damage of Meloidogyne incognita on watermelon. J Nematol 44: 127-133.

DOI: 10.5424/sjar/2017154-11189