Autopolyploids in fodder grass breeding: induction and field performance

Giedrė Dabkevičienė, Vilma Kemešytė, Gražina Statkevičiūtė, Nijolė Lemežienė, Gintaras Brazauskas

Abstract


Doubling of chromosome set directly affects plant performance through increase of organ size, higher feeding value and increased resistance to adverse environmental factors. Therefore efficient methods of polyploid induction are needed in order to develop new varieties of naturally diploid fodder grass species. The efficiency of antimitotic agents as colchicine, amiprophos-methyl, trifluralin and oryzalin was compared in a series of tetraploid induction experiments in Lolium multiflorum, L. perenne and Festuca pratensis, while newly developed tetraploid plants were compared to standard tetraploid varieties in the field trials. Colchicine treatment proved to be the most efficient method for in vitro cultured embryos in comparison with the other agents. Induced tetraploids of F. pratensis produced higher dry matter and seed yield and could be used for the development of new varieties. Induced tetraploid plants of Lolium spp. were equal to the standard varieties in field trials, therefore they could be used as parental genotypes in crosses. Induced tetraploids of F. pratensis produced higher dry matter and seed yield and could be used for development of new variety.

Keywords


embryo culture; meadow fescue; mitotic inhibitors; polyploidization; ryegrass

Full Text:

PDF

References


Aleliūnas A, Jonavičienė K, Statkevičiūtė G, Vaitiekūnaitė D, Kemešytė V, Lübberstedt T, Brazauskas G, 2015. Association of single nucleotide polymorphisms in LpIRI1 gene with freezing tolerance traits in perennial ryegrass. Euphytica 204: 523-534. https://doi.org/10.1007/s10681-014-1330-y

Blakeslee A, Avery A, 1937. Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28: 393-411. https://doi.org/10.1093/oxfordjournals.jhered.a104294

Bugge G, 1987. Selection for seed yield in Lolium perenne L. Plant Breeding 98: 149-155. https://doi.org/10.1111/j.1439-0523.1987.tb01108.x

Burns GA, Gilliland TJ, Grogan D, Watson S, O'kiely P, 2013. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. The Journal of Agricultural Science 151 (3): 331-346. https://doi.org/10.1017/S0021859612000251

Cheng ZH, Zhou XJ, Khan MA, Su L, Meng HW, 2012. In vitro induction of tetraploid garlic with trifluralin. Genet Mol Res 11 (3): 2620-2628. https://doi.org/10.4238/2012.July.10.13

Dabkevičienė G, Kemešytė V, Lemežienė N, Butkutė B, 2013. Production of Dactylis polygama H. tetraploid populiations and their assesment for agromorphological characteristics. Zemdirbyste-Agriculture 100 (3): 303-310. https://doi.org/10.13080/z-a.2013.100.039

Dapkienė R, Nekrošas S, Kanapeckas J, 1999. Vienmečių bei daugiamečių svidrių ir tikrųjų eraičinų tetraploidų sukūrimas ir įvertinimas [Induction and evaluation of tetraploids in perennial ryegrass and meadow fescue]. Žemdirbystė. Mokslo darbai 68: 195-206 (in Lithuanian).

del Pozo JC, Ramirez-Parra E, 2015. Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot 66 (22): 6991-7003. https://doi.org/10.1093/jxb/erv432

Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J, 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104 (3): 359-373. https://doi.org/10.1007/s11240-010-9786-5

Elgersma A, 1990. Seed yield related to crop development and to yield components in nine cultivars of perennial ryegrass (Lolium perenne L.). Euphytica 49 (2): 141-154. https://doi.org/10.1007/BF00027264

Fjellheim S, Blomlie AB, Marum P, Rognli OA, 2007. Phenotypic variation in local populations and cultivars of meadow fescue - Potential for improving cultivars by utilizing wild germplasm. Plant Breeding 126: 279-286. https://doi.org/10.1111/j.1439-0523.2007.01363.x

Grzebelus E, Adamus A, 2004. Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Alium cepa L.) embryos. Plant Sci 167 (3): 569-574. https://doi.org/10.1016/j.plantsci.2004.05.001

Hansen NJP, Andersen SB, 1996. In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin and APM in Brassica napus microspore culture. Euphytica 88 (2): 159-164. https://doi.org/10.1007/BF00032447

Humphreys M, Feuerstein U, Vandewalle M, Baert J, 2010. Ryegrasses. In: Fodder crops and amenity grasses; Boller B, Posselt U, Veronesi F (eds.). pp: 211-260. Springer, New York. https://doi.org/10.1007/978-1-4419-0760-8_10

Humphreys MO, 1991. The value of polyploidy in breeding hybrid grasses. Proc XVII Meeting of the Fodder Crops Section of Eucarpia, Alghero (Italy), Oct 14-18. pp: 37-44.

Humphreys MW, Humphreys J, Donnison I, King I, Thomas HM, Ghesquiere M, Durand JL, Rognli OA, Zwierzykowski Z, Rapacz M, 2004. Molecular breeding and functional genomics for tolerance to abiotic stress. In: Molecular breeding of forage and turf; Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds.). pp: 61-80. Kluwer Acad Publ, Dordrecht. https://doi.org/10.1007/1-4020-2591-2_6

Joshi P, Verma RC, 2004. High Frequency production of colchicine induced autotetraploids in faba bean (Vicia faba L.) . Cytologia 69 (2): 141-147. https://doi.org/10.1508/cytologia.69.141

Kemesyte V, Statkeviciute G, Brazauskas G, 2017. Perennial ryegrass yield performance under abiotic stress. Crop Sci 57 (4): 1935-1940. https://doi.org/10.2135/cropsci2016.10.0864

Nair RM, 2004. Developing tetraploid perennial ryegrass (Lolium perenne L.) populations. New Zeal J Agr Res 47: 45-49. https://doi.org/10.1080/00288233.2004.9513569

Omran A, Mohammand B, 2008. Polyploidization effect in two diploid cotton (Gossypium herbaceum L. and G.arboreum L.) species by colchicine treatments. Afr J Biotechnol 7 (2): 102-108.

Pašakinskienė I, 2000. Culture of embryos and shoot tips for chromosome doubling in Lolium perene and sterile hybrids between Lolium and Festuca. Plant Breeding 119 (2): 185-187. https://doi.org/10.1046/j.1439-0523.2000.00484.x

Pereira RC, Fereira MTM, Davide LC, Pasqual M, Mittelmann A, Techio VH, 2014. Chromosome duplication in Lolium multiflorum Lam. Crop Breed Appl Biotechnol 14 (4): 251-255. https://doi.org/10.1590/1984-70332014v14n4n39

Pintos B, Manzanera JA, 2007. Antimitotic agents increase the production of doubled-haploid embryos from cork anther culture. J Plant Physiol 164: 1595-1604. https://doi.org/10.1016/j.jplph.2006.11.012

Sattler MC, Carvalho CR, Clarindo WR, 2016. The polyploidy and its key role in plant breeding. Planta 243 (2): 281-296. https://doi.org/10.1007/s00425-015-2450-x

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Kerr Wall P, Soltis PS, 2009. Polyploidy and angiosperm diversification. Am J Bot 96 (1): 336-348. https://doi.org/10.3732/ajb.0800079

Stanys V, Staniene G, Šikšnianas T, 2004. In vitro induction of polyploidy in Ribes. Acta Universitatis Latviensis, Biology 676: 235-237.

Statkevičiūtė G, Aleliūnas A, Kemešytė V, Pašakinskienė I, Lübberstedt T, Brazauskas G, 2015. Association analysis of five candidate genes with plant height and dry matter yield in perennial ryegrass. Plant Breeding 134 (4): 454-460. https://doi.org/10.1111/pbr.12280

Sugiyama S, 2006. Responses of shoot growth and survival to water stress gradient in diploid and tetraploid populations of Lolium multiflorum and L. perenne. Grassl Sci 52: 155-160. https://doi.org/10.1111/j.1744-697X.2006.00062.x

Yemets A, Blume Y, 2008. Progress in plant polyploidization based on antimicrotubular drugs. The Open Horticulture Journal 1 (1): 15-20. https://doi.org/10.2174/1874840600801010015

Younis A, Hwang Y, Lim K, 2014. Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33 (2): 215-223. https://doi.org/10.1007/s00299-013-1534-y

Zlesak DC, Thill CA, Anderson NO, 2005. Trifluralin-mediated polyploidizatio of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 141 (3): 281-290. https://doi.org/10.1007/s10681-005-7512-x




DOI: 10.5424/sjar/2017154-11357