Genetic diversity and population structure in caprifigs (Ficus carica var. caprificus) using SSR markers

  • Oguzhan Caliskan Hatay Mustafa Kemal University, Fac. Agriculture, Dept. Horticulture, Hatay
  • Safder Bayazit Hatay Mustafa Kemal University, Fac. Agriculture, Dept. Horticulture, Hatay
  • Muruvvet Ilgin Kahramanmaras Sutcu Imam University, Fac. Agriculture, Dept. Horticulture, Kahramanmaras
  • Nesrin Karatas Alata Horticultural Research Institute, Mersin
  • Ali Ergul Ankara University, Biotechnology Institute, Ankara
Keywords: genetic resources, microsatellite markers, genetic differentiation analysis

Abstract

Abundant wild and cultivated fig germplasm can be found in Turkey, a center of diversity for figs; however, many of these valuable genetic resources have not yet been identified or characterized using molecular markers. In the present study, microsatellite markers were used to characterize a set of 96 caprifig (Ficus carica var. caprificus) accessions from Turkey. The caprifig accessions showed considerable polymorphism with an average of 8.3 alleles per locus. The number of alleles per locus varied from three for the loci LMFC18 and LMFC23, to 14 for the loci FCUPO38-6 and FCUPO08. Genetic distance values and cluster analyses revealed high genetic similarities, except for the reference group, among the caprifig groups. Factorial correspondence analysis also separated the caprifig groups, suggesting that caprifig populations from Turkey were unmixed, probably because of low gene flow, likely because germplasm has not yet been moved among geographical areas and because many caprifig populations arose from propagation by seed. In our population structure analysis, the caprifig accessions could be grouped according to the regions from where they were sampled. Our molecular data revealed great genetic diversity within this caprifig germplasm. This genetically rich caprifig germplasm resource will be useful for both fig breeding programs and analysis of the complex genetic structure of figs that reproduce using various pollination strategies.

Downloads

Download data is not yet available.

References

Akcay ME, Burak M, Kazan K, Yuksel C, Mutaf F, Makir M, Ayanoglu H, Ergul A, 2014. Genetic analysis of Anatolian pear germplasm by simple sequence repeats. Ann Appl Biol 164: 441-452. https://doi.org/10.1111/aab.12113

Aradhya M, Stover E, Velasco D, Koehmstedt A, 2010. Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica 138: 681-694. https://doi.org/10.1007/s10709-010-9442-3

Bandelj D, Javornik B, Jakse J, 2007. Development of microsatellite markers in the common fig, Ficus carica L. Molec Ecol Notes 7: 1311-1314. https://doi.org/10.1111/j.1471-8286.2007.01866.x

Bashalkhanov S, Pandey M, Rajora OP, 2009. A simple method for estimation genetic diversity in large populations from finite sample sizes. BMC Genetics 84: 1-10.

Beck NG, Lord EM, 1988. Breeding system in Ficus carica, the common fig. I. Floral diversity. Amer J Bot 75: 1904-1912. https://doi.org/10.1002/j.1537-2197.1988.tb11271.x

Belkhir K Goudet J, Chikhi L, Bonhomme F, 2004. Genetix, logiciel sous WindowsTM pour la génétique des populations, vers 4.05. 10 January 2017. http://www.genetix.univ-montp2.fr/genetix/genetix.htm.

Caliskan O, Polat AA, 2012. Morphological diversity among fig (Ficus carica L.) accessions sampled from the eastern Mediterranean region of Turkey. Turk J Agric For 36: 179-193.

Caliskan O, Polat AA, Celikkol P, Bakir M, 2012. Molecular characterization of autochthonous Turkish fig accessions. Span J Agric Res 10: 130-140. https://doi.org/10.5424/sjar/2012101-094-11

Caliskan O, Bayazit S, Ilgın M, Karatas N, Kocatas H, 2016. Effects of some applications on in vitro pollen germination of caprifig genotypes (Ficus carica var. caprificus). VII Int Sci Agric Symp, Jahorina (Bosnia & Herzegovina), 6-9 Oct, pp: 238-244.

Campoy JA, Lerigoleur-Balsemin E, Christmann H, Beauvieux R, Girollet N, Quero-Garcia J, Dirlewanger E, Barreneche T, 2016. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol 16: 49. https://doi.org/10.1186/s12870-016-0712-9

Condit IJ, 1947. The fig. Chronica Botanica, Waltham, MA, USA.

Corander J, Siren J, Arjas E, 2008. Bayesian spatial modeling of genetic population structure. Comp Stat 23:111-129. https://doi.org/10.1007/s00180-007-0072-x

Dalkilic Z, Mestav HO, Gunver-Dalkilic G, Kocatas H, 2011. Genetic diversity of male fig (Ficus carica caprificus L.) genotypes with random amplified polymorphic DNA (RAPD) markers. Afr J Biotec 10: 519-526.

Davis PH, 1978. Flora of Turkey and the East Aegean Islands. Edinburgh Univ Press, Edinburgh.

Dunning AM, Durocher F, Healey CS, Teare MD, McBride SE, Carlomagno F, Xu CF, Dawson E, Rhodes S, Ueda S, et al., 2000. The extent of linkage disequilibrium in for populations with distinct demographic histories. Amer J Human Genet 67: 544-554. https://doi.org/10.1086/316906

Essid A, Aljane F, Ferchichi A, Hormoza JI, 2015. Analysis of genetic diversity of Tunusian caprifig (Ficus carca L.) accessions using simple seaquence repeat (SSR) markers. Hereditas 152: 1-7. https://doi.org/10.1186/s41065-015-0002-9

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L, Lischer HEL, 2010. Arlequin suite vers 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Flaishman MA, Rodov V, Stover E, 2008. The fig: Botany, horticulture, and breeding. Hortic Rev 34: 113-197.

Flaishman MA, Zohar RP, Freiman ZE, Yablovitz Z, 2015. Conventional and molecular breeding systems in fig (Ficus carica L.). V. Int Symp on Fig, Napoli (Italy), Aug 31-Sept 3, Abstract Book, p. 8.

Galil J, Neeman G, 1977. Pollen transfer and pollination in the common fig (Ficus carica L.). New Phytol 79: 163-171. https://doi.org/10.1111/j.1469-8137.1977.tb02192.x

Gaut BS, Long AD, 2003. The lowdown on linkage disequilibrium. Plant Cell 15: 1502-1508. https://doi.org/10.1105/tpc.150730

Giraldo E, Viruel MA, Lopez-Corrales M, Hormaza JI, 2005. Characterisation and cross-species transferability of microsatellites in common fig (Ficus carica L.). J Hortic Sci Biotec 80: 217-224.

Giraldo E, Lopez-Corrales M, Hormaza JI, 2008. Optimization of the management of and ex-situ germplasm bank in common fig with SSRs. J Amer Soc Hort Sci 133: 69-77.

Giraldo E, Lopez-Corrales M, Hormaza JI, 2010. Selection of the most discriminating morphological qualitative variables for characterization of fig germplasm. J Amer Soc Hort Sci 135: 240-249.

Ikegami H, Nogata H, Hırashima K, Awamura M, Nakahara T, 2009. Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD and SSR markers. Genet Resour Crop Evol 56: 201-209. https://doi.org/10.1007/s10722-008-9355-5

IPGRI and CIHEAM, 2003. Descriptors for figs. Int Plant Genet Resour Inst (IPGRI, Rome, Italy, and International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Paris, France.

Khadari B, Hochu J, Santoni S, Kjellberg F, 2001. Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Molec Ecol Notes 1: 191-193. https://doi.org/10.1046/j.1471-8278.2001.00072.x

Kislev ME, Hartmann A, Bar-Yosef O, 2006. Early domesticated fig in the Jordan Valley. Science 321: 1372-1374. https://doi.org/10.1126/science.1125910

Landguth EL, Fedy BC, Oyler-McCance SJ, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin MJ, Cushman SA, 2012. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12: 276-284. https://doi.org/10.1111/j.1755-0998.2011.03077.x

Lefort F, Lally M, Thompson D, Douglas GC, 1998. Morphological traits microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genet 47: 5-6.

Minch E, Ruiz-Linares A, Goldstein D B, Feldman M, Cavalli-Sforza LL, 1995. Microsat (vers 1.4d): a computer program for calculating various statistics on microsatellite allele data. Stanford Univ, Ca, USA.

Mori K, Shirasawa K, Nogata H, Hirata C, Tashiro K, Habu T, Kim S, Himeno S, Kuhara S, Ikegami H, 2017. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci Rep 7: 1-11.

Paetkau D, Calvert W, Stirling I, Strobeck C, 1995. Microsatellite analysis of population structure in Canadian polar bears. Molec Ecol 4: 347-354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

Podgornik M, Vuk I, Vrhovnik I, Mavsar DB, 2010. A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Sci Hortic 125: 380-389. https://doi.org/10.1016/j.scienta.2010.04.030

Rodriguez M, Rau D, O'Sullivan D, Brown AHD, Papa R, Attene G, 2012. Genetic structure and linkage disequilibrium in landrace populations of barley in Sardinia. Theor Appl Genet 125: 171-184. https://doi.org/10.1007/s00122-012-1824-8

Rohlf F, 2004. NTSYS-pc: Numeric Taxonomic Systems. Applied Biostatistics Inc. Version 2.20. Setoukat, NY, USA.

Salhi-Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M, Trifi M, 2006. Genetic diversity of different Tunusian fig (Ficus carica L.) collections revealed RAPD fingerprints. Hereditas 143: 15-22. https://doi.org/10.1111/j.2005.0018-0661.01904.x

Sneath PHA, Sokal RR, 1973. Numerical taxonomy. Freeman, San Francisco, Ca, USA.

Song BH, Windsor AJ, Schmid KJ, Ramos-Onsins S, Schranz ME, Heidel, AJ, Mitchell-Olds, T, 2009. Multilocus patterns of nucleotide diversity, population structure and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181: 1021-1033. https://doi.org/10.1534/genetics.108.095364

Storey WB, Condit IJ, 1969. Fig (Ficus carica L.) In: Outlines of perennial crop breeding in the tropics, Misc paper 4; Ferwerda FP & Wit F (eds). Landbouwhogeschool, pp: 259-267.

Stover E, Aradhya M, 2008. Fig genetic resources and research at the US national clonal germplasm repository in Davis, California. Acta Hortic 798: 57-68. https://doi.org/10.17660/ActaHortic.2008.798.6

Ulas B, Fiorentino G, 2010. Preliminary archaeobothanical analyses from the site of Yumuktepe. J Arche Art 135: 1-10.

Wright S, 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x

Published
2018-12-19
How to Cite
Caliskan, O., Bayazit, S., Ilgin, M., Karatas, N., & Ergul, A. (2018). Genetic diversity and population structure in caprifigs (Ficus carica var. caprificus) using SSR markers. Spanish Journal of Agricultural Research, 16(3), e0703. https://doi.org/10.5424/sjar/2018163-11662
Section
Plant breeding, genetics and genetic resources