Effect of spirulina (Arthrospira platensis) supplementation on tilapia (Oreochromis niloticus) growth and stress responsiveness under hypoxia

Ignacio Plaza, José L. Garcia, Morris Villarroel


Several recent studies have shown that Arthrospira sp. supplementation of feeds has a beneficial effect on fish health and growth, but less is known about its possible effects on stress responsiveness. The present study was designed to evaluate using Arthrospira platensis as a feed supplement for Oreochromis niloticus fry, reared in recirculating aquaculture systems. Two isocaloric and isonitrogenous fishmeal-based diets were prepared with 0% and 1% A. platensis and fed to fry, approximately 10 mg live weight at the beginning of the experimental period (n=16 tanks, 8 tanks per treatment), at a feeding rate of 6% live weight, four meals a day for 50 d. The weight gain per tank, specific growth rate and feed conversion ratio were similar among treatments but A. platensis supplementation significantly increased survival (p<0.05). Stress responsiveness was measured in all fish from 12 tanks using a non-invasive two-choice test. All fish from one home tank (n=6 tanks per treatment), were placed into a shaded tank where oxygen levels were slowly reduced. A doorway was then opened to a second illuminated tank with normal oxygen levels and the number of fish that left the home tank were counted. The fish fed A. platensis stayed significantly (p=0.001) longer in the home tank (30.20 min ± 13.22) than controls (17.35 min ± 8.32), suggesting a lower stress responsiveness and a higher tolerance to hypoxia.


fish; feed additive; two-choice; behaviour; non-invasive

Full Text:



Abdel-Tawwab M, Ahmad MH, 2009. Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquac Res 40 (9): 1037-1046. https://doi.org/10.1111/j.1365-2109.2009.02195.x

Abdel-Tawwab M, Hagras AE, Elbaghdady HAM, Monier MN, 2015. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquacult Int 23 (5): 1261-1274. https://doi.org/10.1007/s10499-015-9882-y

Adel M, Yeganeh S, Dadar M, Sakai M, Dawood MA, 2016. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immunol 56: 436-444. https://doi.org/10.1016/j.fsi.2016.08.003

Anzola B, 2013. The use of tryptophan in shelter dogs to treat stress-related anxiety disorders. Rev Cient 23 (1): 26-32.

Barreto RE, Volpato GL, 2011. Ventilation rates indicate stress-coping styles in Nile tilapia. J Biosci 36 (5): 851-855. https://doi.org/10.1007/s12038-011-9111-4

Berrios-Hernandez JM, Snow JR, 1983. Comparison of methods for reducing fry losses to cannibalism in tilapia production. Prog Fish Cult 45 (2): 116-118. https://doi.org/10.1577/1548-8659(1983)45[116:COMFRF]2.0.CO;2

Delarue JOCP, Matzinger O, Binnert C, Schneiter P, Chiolero R, Tappy L, 2003. Fish oil prevents the adrenal activation elicited by mental stress in healthy men. Diabetes Metab 29 (3): 289-295. https://doi.org/10.1016/S1262-3636(07)70039-3

EC, 2003. Regulation Nº 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrient. Official Journal of the European Union, 43. [Lex - 32003R183].

FAO, 2016. El estado mundial de la pesca y la acuicultura. 2016. Contribución a la seguridad alimentaria y la nutrición para todos. Roma. 224 pp.

Ferrari S, Horri K, Allal F, Vergnet A, Benhaim D, Vandeputte M, Chatain, B, Bégout ML, 2016. Heritability of boldness and hypoxia avoidance in European seabass, Dicentrarchus labrax. Plos One 11 (12): e0168506. https://doi.org/10.1371/journal.pone.0168506

Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF, 2006. Current issues in fish welfare. J Fish Biol 68 (2): 332-372. https://doi.org/10.1111/j.0022-1112.2006.001046.x

Ibrahem MD, Mohamed MF, Ibrahim MA, 2013. The role of spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. J Agr Sci 5 (6): 109-117. https://doi.org/10.5539/jas.v5n6p109

James R, Sampath K, Thangarathinam R, Vasudevan I, 2006. Effect of dietary spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Isr J Aquac 58: 97-104.

Jourdan JP, 1999. Cultivez votre spiruline, manuel de culture artisanale de la spiruline. Antenna Technology, Paris, France.

Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, Kouretas D, 2010. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc 42 (1): 142-151. https://doi.org/10.1249/MSS.0b013e3181ac7a45

Khanzadeh M, Fereidouni AE, Berenjestanaki SS, 2016. Effects of partial replacement of fish meal with spirulina platensis meal in practical diets on growth, survival, body composition, and reproductive performance of three-spot gourami (Trichopodus trichopterus) (Pallas, 1770). Aquacult Int 24 (1): 69-84. https://doi.org/10.1007/s10499-015-9909-4

Laursen DC, Olsén HL, de Lourdes Ruiz-Gómez M, Winberg S, Höglund E, 2011. Behavioural responses to hypoxia provide a non-invasive method for distinguishing between stress coping styles in fish. Appl Anim Behav Sci 132 (2): 211-216. https://doi.org/10.1016/j.applanim.2011.03.011

McCarty MF, 2007. Clinical potential of spirulina as a source of phycocyanobilin. J Med Food 10 (4): 566-570. https://doi.org/10.1089/jmf.2007.621

Phang SM, Miah MS, Yeoh BG, Hashim MA, 2000. Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12 (3): 395-400. https://doi.org/10.1023/A:1008157731731

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.r-project.org. [21 Sept, 2013].

Sharma S, Sharma S, Sharma KP, 2005. Protective role of spirulina feed in a freshwater fish (Poecilia reticulata Peters) exposed to an azo dye-methyl red. Ind J Expl Biol 43: 1165-1169.

Shiau SY, Hsieh HL, 1997. Vitamin B6 requirements of tilapia Oreochromis niloticus x O. aureus fed two dietary protein concentrations. Fish Sci 63 (6): 1002-1007. https://doi.org/10.2331/fishsci.63.1002

Shor-Posner G, Feaster D, Blaney NT, Rocca H, Mantero-Atienza E, Szapocznik J, Baum MK, 1994. Impact of vitamin B6 status on psychological distress in a longitudinal study of HIV-1 infection. Int J Psychiatry Med 24 (3): 209-222. https://doi.org/10.2190/7VD8-DA67-8T9L-UCHL

Sørensen C, Johansen IB, Øverli Ø, 2013. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocr 181: 25-34. https://doi.org/10.1016/j.ygcen.2012.12.003

Takeuchi T, Lu J, Yoshizaki G, Satoh S, 2002. Effect on the growth and body composition of juvenile tilapia (Oreochromis niloticus) fed raw spirulina. Fish Sci 68 (1): 34-40. https://doi.org/10.1046/j.1444-2906.2002.00386.x

Teimouri M, Amirkolaie AK, Yeganeh S, 2013. The effects of spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 396: 14-19. https://doi.org/10.1016/j.aquaculture.2013.02.009

Ungsethaphand T, Peerapornpisal Y, Whangchai N, Sardsud U, 2010. Effect of feeding spirulina platensis on growth and carcass composition of hybrid red tilapia (Oreochromis mossambicus× O. niloticus). Maejo Int J Sci Technol 4 (2): 331-336.

Van Soest PV, Robertson JB, Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Anim Sci 74 (10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Velasquez SF, Chan MA, Abisado RG, Traifalgar RFM, Tayamen MM, Maliwat GCF, Ragaza JA, 2016. Dietary spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J Appl Phycol 28 (2): 1023-1030. https://doi.org/10.1007/s10811-015-0661-y

Ward AJ, Webster MM, Hart PJ, 2006. Intraspecific food competition in fishes. Fish Fish 7 (4): 231-261. https://doi.org/10.1111/j.1467-2979.2006.00224.x

Webster MS, Hixon MA, 2000. Mechanisms and individual consequences of intraspecific competition in a coral-reef fish. Mar Ecol Prog Ser 196: 187-194. https://doi.org/10.3354/meps196187

Yeganeh S, Teimouri M, Amirkolaie AK, 2015. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res Vet Sci 101: 84-88. https://doi.org/10.1016/j.rvsc.2015.06.002

Zarrouk C, 1966. Contribution a l'etude d'une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.

DOI: 10.5424/sjar/2018161-11698