The effect of coarse-droplet spraying with double flat fan air induction nozzle and spray volume adjustment model on the efficiency of fungicides and residues in processing tomato

Henryk Ratajkiewicz, Roman Kierzek, Michał Raczkowski, Agnieszka Hołodyńska-Kulas, Agnieszka Łacka, Tomasz Szulc

Abstract


The study was conducted for the purpose of improving the application of fungicides against potato late blight (Phytophthora infestans (Mont.) de Bary) (PLB) in processing tomato. The usability of coarse spray quality with double flat fan air induction IDKT12003 nozzle and the impact of fixed and variable spray volume and adjuvants during alternate application of azoxystrobin and chlorothalonil were analysed on the basis of plant infestation and fungicide residues. The variable spray volume was calculated based on the number of leaves on a plant. The study was conducted during three vegetation seasons. Spraying of plants with significantly flattened canopies during the peak of the fructification season using an IDKT12003 nozzle was as effective as in the case of fine spraying performed with an XR11003 nozzle and facilitated the increase of fungicides residue. In the case of plants with high-spreading canopy at the beginning of fructification, XR11003 nozzle favoured the reduction of PLB infestation. Both spray volume adjustment systems enabled the same level of protection of tomato against PLB, which could result from alternate application of systemic and contact fungicides. Polyalkyleneoxide modified heptamethyltrisiloxane adjuvant, which causes siginificant increase in wetting and droplet spreading, facilitated the reduction of tomato PLB infestation during the application of fungicides using an IDKT12003 nozzle.


Keywords


azoxystrobin; chlorothalonil; Phytophthora infestans; spray deposit; QuEChERS

Full Text:

PDF HTML XML

References


Bain RA, Ritchie F, Lees A, Dyer C, 2014. Impact of fungicide input on leaf blight (Phytophthora infestans) development on different potato cultivars. Proc 14th EuroBlight Workshop, PPO Special Report 16, Schepers HTAM (ed.), Limassol (Cyprus), 12-15 May 2013, pp: 65-73.

Barros JFC, Basch G, Freixial R, Carvalho M, 2009. Effect of reduced doses of mesosulfuron + iodosulfuron to control weeds in no-till wheat under Mediterranean conditions. Span J Agric Res 7 (4): 905-912. https://doi.org/10.5424/sjar/2009074-1104

Bartlett DW, Clough JM, Godwin JR, Hall AA, 2002. Hamer M, Parr-Dobrzanski B, The strobilurin fungicides. Pest Manag Sci 58 (7): 649-662. https://doi.org/10.1002/ps.520

Berger RD, 1980. Measuring disease intensity. Proc of E. C. Stakman Commemorative Symp. on Crop Loss Assessment; Teng PS, Krupa SV (eds.), Minneapolis, MN (US), Aug 20-23. pp: 28 31.

Braunschweiler H, Koivisto S, 2000. Fate and effects of chemicals in the Nordic environments related to the use of biocides. Nordic Council of Ministers, Copenhagen. 135 pp.

Broniarz-Press L, Ochowiak M, Markuszewska M, Włodarczak S, 2013. Wpływ lepkości cieczy na proces rozpylania w inhalatorach medycznych. Inż Ap Chem 52 (4): 291-292.

Bruhn JA, Fry WE, 1982. A statistical model of fungicide deposition on potato foliage. Phytopathology 72: 1301-1305. https://doi.org/10.1094/Phyto-72-1301

Cooke LR, Schepers HTAM, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, et al. 2011. Epidemiology and integrated control of potato late blight in Europe. Potato Res 54 (2): 183-222. https://doi.org/10.1007/s11540-011-9187-0

Dammer K, Wolny J, Giebel A, 2008. Estimation of the leaf area index in cereal crops for variable rate fungicide spraying. Eur J Agron 28: 351-360. https://doi.org/10.1016/j.eja.2007.11.001

Dorr GJ, Wang S, Mayo LC, McCue SW, Forster WA, Hanan J, He X, 2015. Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion. Exp Fluids 56 (7): 143. https://doi.org/10.1007/s00348-015-2012-9

Farnham C, Nakao M, Nabeshima M, Mizuno T, 2015. Effect of water temperature on evaporation of mist sprayed from a nozzle. J Heat Island Inst Int 10: 35-44.

Feng PC, Chiu T, Sammons RD, Ryerse JS, 2003. Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Sci 51 (3): 443-448. https://doi.org/10.1614/0043-1745(2003)051[0443:DSAGRA]2.0.CO;2

Field RJ, Bishop NG, 1988. Promotion of stomatal infiltration of glyphosate by an organosilicone surfaktant reduces the critical rainfall period. Pestic Sci 24: 55-62. https://doi.org/10.1002/ps.2780240106

Fritz BK, Czaczyk Z, Hoffmann WC, 2016. Model based decision support system of operating settings for MMAT nozzles. J. Plant Prot Res 56 (2): 178-185. https://doi.org/10.1515/jppr-2016-0030

Gajtkowski A, Bzdęga W, Migdalska P, 2005. Spray coverage in potatoes with low drift and air-induction nozzles. J Plant Prot Res 45 (1): 17-23.

Gaskin RE, Manktelow DW, Skinner SJ, Elliott GS, 2004. Use of a superspreader adjuvant to reduce spray application volumes on avocados. N Z Plant Prot 57: 266.

Gent DH, Schwartz HF, Nissen SJ, 2003. Effect of commercial adjuvants on vegetable crop fungicide coverage, absorption, and efficacy. Plant Dis 87 (5): 591-597. https://doi.org/10.1094/PDIS.2003.87.5.591

Gonzalez-de-Soto M, Emmi L, Perez-Ruiz M, Aguera J, Gonzalez-de-Santos P, 2016. Autonomous systems for precise spraying–Evaluation of a robotised patch sprayer. Biosyst Eng 146: 165-182. https://doi.org/10.1016/j.biosystemseng.2015.12.018

Grayson TB, Batten DM Walter D, 1996. Adjuvant effects on the therapeutic control of potato late blight by dimethomorph wettable powder formulations. Pestic Sci 46 (4): 355-359. https://doi.org/10.1002/(SICI)1096-9063(199604)46:4<355::AID-PS364>3.0.CO;2-U

Green JM, Hazen JL, 1998. Understanding and using adjuvant properties to enhance pesticide activity. Proc Fifth Int Symp on Adjuvants for Agrochemicals, Vol 1; McMullan PM (ed), Memphis, TN (US), August 17–21. pp: 25-36.

Grinstein A, Riven Y, Elad Y, 1997. Improved chemical control of botrytis blight in roses. Phytoparasitica 25: 87-92. https://doi.org/10.1007/BF02980335

Hamm PB, Clough GH, 1999. Comparison of application methods on deposition and redistribution of chlorothalonil in a potato canopy and potential for control of late blight. Plant Dis 83 (5): 441-444. https://doi.org/10.1094/PDIS.1999.83.5.441

Hewitt AJ, 2008. Spray optimization through application and liquid physical property variables–I. Environmentalist 28 (1): 25-30. https://doi.org/10.1007/s10669-007-9044-5

Holloway PJ, 1995. Getting to know how adjuvants really work: some Challenges for the next century. Proc Fourth Int Symp Adjuvants for Agrochemicals, Melbourne (Australia), Oct 2-6; Gaskin RE (ed). pp: 167-176.

Holloway PJ, Ellis B, Webb DA, Western NM, Tuck CR, Hayes AL, Miller PCH, 2000. Effects of some agricultural tank-mix adjuvants on the deposition efficiency of aqueous sprays on foliage. Crop Prot 19 (1): 27-37. https://doi.org/10.1016/S0261-2194(99)00079-4

Holterman HJ, Van De Zande JC, Porskamp HAJ, Huijsmans JFM, 1997. Modelling spray drift from boom sprayers. Comput Electron Agr 19 (1): 1-22. https://doi.org/10.1016/S0168-1699(97)00018-5

Hunsche M, 2008. Seed oil ethoxylate adjuvants and their influence on retention and rainfastness of the contact fungicide mancozeb. Acta Hortic 772: 403-406. https://doi.org/10.17660/ActaHortic.2008.772.70

Jensen PK, Nielsen BJ, 2008. Influence of volume rate and nozzle angling on control of potato late blight with flat fan, pre-orifice and air-induction nozzles. In: Effects of climate change on plants: Implications for agriculture; Halford N, Jones HD, Lawlor D (eds). pp: 447-452. Assoc Appl Biol, UK.

Kierzek R, Wachowiak M, 2005. Effect of spray application parameters and adjuvants on retention and performance of foliage applied herbicides. Annu Rev Agri Eng 4 (1): 355-363.

Kierzek R, Wachowiak M, 2009. Wpływ nowych typów rozpylaczy na jakość pokrycia roślin ziemniaków cieczą użytkową. Prog Plant Prot 49 (3): 1145-1149.

Lebeau F, 2004. Modelling the dynamic distribution of spray deposits. Biosyst Eng 89 (3): 255-265. https://doi.org/10.1016/j.biosystemseng.2004.07.002

Lefebvre A, 1989. Atomization and sprays. Tayor & Francis, US. 423 pp.

Lichiheb N, Personne E, Bedos C, Barriuso E, 2014. Adaptation of a resistive model to pesticide volatilization from plants at the field scale: Comparison with a dataset. Atmos Environ 83: 260-268. https://doi.org/10.1016/j.atmosenv.2013.11.004

Lipiński A, Choszcz D, Konopka S, 2007. Ocena rozpylaczy do oprysku ziemniaków w aspekcie równomierności pokrycia roślin cieczą. Inżynieria Rolnicza 9 (97): 135-141.

Liu ZQ, 2003. Characterization of glyphosate uptake into grass species. Aust J Agric Res 54: 877-884. https://doi.org/10.1071/AR03063

Llorens J, Gil E, Llop J, 2011. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods. Sensors 11 (2): 2177-2194. https://doi.org/10.3390/s110202177

Manthey FA, Woźnica Z, Miłkowski P, 1998. Surfactants differ in their effect on droplet retention, droplet spread, and herbicide efficacy. In: Pesticide formulations and application systems: 18th Volume; Nalewaja JD, Goss GR, Tann RS (eds). pp: 241-248. ASTM, West Conshohocken, USA. https://doi.org/10.1520/STP14159S

Miller PCH, Ellis MB, 2000. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot 19 (8): 609-615. https://doi.org/10.1016/S0261-2194(00)00080-6

Miller P, Tuck C, 2005. Factors influencing the performance of spray delivery systems: A review of recent developments. J ASTM Int 2 (6): 1-13. Paper ID JAI12900.

Mitani S, 2001. 2001. RANMAN® (cyazofamid) - A novel fungicide for the control of oomycete plant diseases. Agrochemicals Japan 78: 17-20.

Monadjemi S, El Roz M, Richard C, Ter Halle A, 2011. Photoreduction of chlorothalonil fungicide on plant leaf models. Environ Sci Technol 45 (22): 9582-9589. https://doi.org/10.1021/es202400s

Nikolov AD, Wasan DT, Koczo K, Policello GA, 1998. Mechanisms for "superspreading": role of surface tension gradient and surfactant adsorption. Proc Fifth Int Symp on Adjuvants for Agrochemicals, Vol 1; McMullan PM (ed), Memphis, TN (US), August 17–21. pp: 125-130.

Nuyttens D, De Schampheleire M, Baetens K, Sonck B, 2007. The influence of operator-controlled variables on spray drift from field crop sprayers. T ASABE 50 (4): 1129-1140. https://doi.org/10.13031/2013.23622

Ozkan HE, Zhu H, Derksen RC, Guler H, Krause C, 2006. Evaluation of various spraying equipment for effective application of fungicides to control Asian soybean rust. Asp Appl Biol 77 (2): 423.

Prokop M, Veverka K, 2006. Influence of droplet spectra on the efficiency of contact fungicides and mixtures of contact and systemic fungicides. Plant Prot Sci 42: 26-33.

Ramsdale BK, Messersmith CG, 2001. Nozzle, spray volume, and adjuvant effects on carfentrazone and imazamox efficacy 1. Weed Technol 15 (3): 485-491. https://doi.org/10.1614/0890-037X(2001)015[0485:NSVAAE]2.0.CO;2

Ratajkiewicz H, Kierzek R, Karolewski Z, Wachowiak M, 2009. The effect of adjuvants, spray volume and nozzle type on azoxystrobin efficacy against Leptosphaeria maculans and L. biglobosa on winter oilseed rape. J Plant Prot Res 49 (4): 440-445. https://doi.org/10.2478/v10045-009-0070-9

Ratajkiewicz H, Kierzek R, Raczkowski M, Hołodyńska-Kulas A, Łacka A, Wójtowicz A, Wachowiak M, 2016. Effect of the spray volume adjustment model on the efficiency of fungicides and residues in processing tomato. Span J Agric Res 14 (3): e1007. https://doi.org/10.5424/sjar/2016143-9339

Rioboo R, Marengo M, Tropea C, 2002. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33 (1): 112-124. https://doi.org/10.1007/s00348-002-0431-x

Różańska S, Broniarz-Press L, Różański J, Mitkowski P, Ochowiak M, Woziwodzki S, 2012. Extensional viscosity and stability of oil-in-water emulsions with addition poly (ethylene oxide). Procedia Engineer 42: 733-741. https://doi.org/10.1016/j.proeng.2012.07.466

Ryckaert B, Spanoghe P, Haesaert G, Heremans B, Isebaert S, Steurbaut W, 2007. Quantitative determination of the influence of adjuvants on foliar fungicide residues. Crop Prot 26 (10): 1589-1594. https://doi.org/10.1016/j.cropro.2007.02.011

Schönherr J, Baur P, Buchholz A, 1999. Modelling foliar penetration: it's role in optimising pesticide delivery. In: Pesticide chemistry and bioscience, The food-environment challenge; Brooks GT, Roberts TR (eds.), pp: 134-154. The Royal Society of Chemistry, Cambridge. https://doi.org/10.1533/9781845698416.3.134

Spillman JJ, 1984. Spray impaction, retention and adhesion: an introduction to basic characteristics. Pestic Sci 15 (2): 97-106. https://doi.org/10.1002/ps.2780150202

Stagnari F, Chiarini M, Pisante M, 2007. Influence of fluorinated surfactants on the efficacy of some postemergence sulfonylurea herbicides. J. Pestic Sci 32 (1): 16-23. https://doi.org/10.1584/jpestics.G06-29

Stevens PJG, Baker EA, Anderson NH, 1988. Factors affecting the foliar absorption and redistribution of pesticides. 2. Physicochemical properties of the active ingredient and the role of surfactant. Pestic Sci 24: 31-53. https://doi.org/10.1002/ps.2780240105

Stevens PJG, Gaskin RE, Hong S, Zabkiewicz JA, 1991. Contributions of stomatal infiltration and cuticular penetration to enhancements of foliar uptake by surfactants. Pestic Sci 33: 371-382. https://doi.org/10.1002/ps.2780330310

Stevens PJ, Kimberley MO, Murphy DS, Policello GA, 1993. Adhesion of spray droplets to foliage: the role of dynamic surface tension and advantages of organosilicone surfactants. Pestic Sci 38 (2‐3): 237-245. https://doi.org/10.1002/ps.2780380219

Taylor P, 2011. The wetting of leaf surfaces. Curr Opin Colloid In 16 (4): 326-334. https://doi.org/10.1016/j.cocis.2010.12.003

Thelen KD, Jackson EP, Penner D, 1995. The basis for the hardwater antagonism of glyphosate activity. Weed Sci 43: 541-548.

Tomlin CDS (ed), 2000. The Pesticide Manual - A world compendium (12th Ed). BCPC, Farnham, Surrey, UK. 1250 pp.

van Zyl SA, Brink JC, Calitz FJ, Coertze S, Fourie PH, 2010. The use of adjuvants to improve spray deposition and Botrytis cinerea control on Chardonnay grapevine leaves. Crop Prot 29 (1): 58-67. https://doi.org/10.1016/j.cropro.2009.08.012

Walklate PJ, Cross JV, 2013. Regulated dose adjustment of commercial orchard spraying products. Crop Prot 54: 65-73. https://doi.org/10.1016/j.cropro.2013.07.019

Walklate PJ, Cross JV, Richardson B, Baker DE, Murray RA, 2003. A generic method of pesticide dose expression: Application to broadcast spraying of apple trees. Ann Appl Biol 143: 11−23. https://doi.org/10.1111/j.1744-7348.2003.tb00264.x

Wang CJ, Liu ZQ, 2007. Foliar uptake of pesticides—Present status and future challenge. Pestic Biochem Phys 87 (1): 1-8. https://doi.org/10.1016/j.pestbp.2006.04.004

Warnes GR, Bolker B, Lumley T, Johnson RC, 2015. Gmodels: Various R programming tools for model fitting. R package vers 2.16.2. https://CRAN.R-project.org/package=gmodels.

Washington JR, 1997. Relationship between the spray droplet density of two protectant fungicides and the germination of Mycosphaerella fijiensis ascospores on banana leaf surfaces. Pestic Sci 50: 233-239. https://doi.org/10.1002/(SICI)1096-9063(199707)50:3<233::AID-PS562>3.0.CO;2-V

Wise JC, Jenkins PE, Schilder MC, Vandervoort C, Isaacs R, 2010. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Prot 29: 378-385. https://doi.org/10.1016/j.cropro.2009.11.014

Zhu H, Dorner JW, Rowland DL, Derksen RC, Ozkan HE, 2004. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosyst Eng 87 (3): 275-283. https://doi.org/10.1016/j.biosystemseng.2003.11.012




DOI: 10.5424/sjar/20181614-11726