Milk hygiene in small ruminants: A review

Keywords: milk quality, somatic cell count, milk bacterial count, mammary pathogens, milk antimicrobial residues, water addition, aflatoxins

Abstract

Somatic cell count (SCC), mammary pathogens prevalence, total and specific bacterial counts, antimicrobial residues, macroscopic sediment, water addition, aflatoxins and other contaminants constitute the basis for milk payment-schemes, monitoring and improvement of flock hygiene and health management, and development of analytical surveillance programs in the dairy small ruminants. The present work reviews factors influencing the variation of these variables, including milk analytical methods, storage and preservation, along with management implications during the last two decades. Following farmer and cooperative educational programs, progressive reductions have been reported for total bacterial count and antimicrobial residue occurrence in bulk tank milk. These results were consistent, however, with high values for SCC and specific bacterial populations. Thus, mastitis control programs should be intensified to increase hygiene in milk and economic returns for producers and processors. In addition, the implementation of programs to reduce specific bacterial counts (i.e., psychrotrophs, coliforms, Clostridium spp. spores) and mammary pathogen prevalence (i.e., Staph. aureus, Mycoplasma spp.), as well as the use of combined screening methods for an increased rate of antimicrobial detection, are currently required strategies which are positively valuated by milk processors, industry and consumers. Other contaminants may also be present, but cost-effective screening and analytical systems have not yet been implemented. This review aims to be helpful for troubleshooting milk quality and safety, developing future premium payment systems and industry quality-standards, optimizing management, on-farm risk traceability systems and consumer acceptance.

Downloads

Download data is not yet available.

Author Biography

Carlos Gonzalo, Universidad de León, Facultad de Veterinaria, Departamento de Producción Animal, Campus de Vegazana, 24071-León

Profesor Titular

Habilitación positiva al cuerpo de Catedráticos de universidad

References

Amores J, Sánchez A, Gómez-Martín A, Corrales JC, Contreras A, De la Fe C, 2010. Viability of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in goat milk samples stored under different conditions. Vet Microbiol 145: 347-350. https://doi.org/10.1016/j.vetmic.2010.03.030

Amores J, De la Fe C, Gómez-Martín A, Corrales JC, Contreras A, Sánchez A, 2011. Preserved goat milk as a valid simple for the PCR detection of Mycoplasma agalactiae. Small Rumin Res 99: 61-64. https://doi.org/10.1016/j.smallrumres.2011.03.053

Amores J, Sánchez A, Gómez-Martín A, Corrales JC, Contreras A, De la Fe C, 2012. Surveillance of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in dairy goat herds. Small Rumin Res 102: 89-93. https://doi.org/10.1016/j.smallrumres.2011.09.008

Antunac N, Havranek J, Samarija D, 2001. Freezing point of goat's milk. Milchwissenschaft 56: 14-16.

Antunes NT, Tavío MM, Assuncao P, Rosales RS, Poveda C, De la Fe C, Gil MC, Poveda JB, 2008. In vitro susceptibilities of field isolates of Mycoplasma agalactiae. Vet J 177: 436-438. https://doi.org/10.1016/j.tvjl.2007.05.008

Arias C, Oliete B, Seseña S, Jimenez L, Pérez-Guzmán MD, Arias R, 2013. Importance of on-farm management practices on lactate-fermenting Clostridium spp. spore contamination of Manchega ewe milk: Determination of risk factors and characterization of Clostridium population. Small Rumin Res 111: 120-128. https://doi.org/10.1016/j.smallrumres.2012.11.030

Arias C, Oliete B, Seseña S, Jiménez L, Palop Ll, Pérez-Guzmán MD, Arias R, 2016. Importance of on-farm management practices on lactate-fermenting Clostridium spp. spore contamination of total mixed ration of Manchega ewe feeding. Determination of risk factors and characterization of Clostridium population. Small Rumin Res 139: 39-45. https://doi.org/10.1016/j.smallrumres.2016.05.003

Ariznabarreta A, Gonzalo C, San Primitivo F, 2002. Microbiological quality and somatic cell count of ewe milk with special reference to staphylococci. J Dairy Sci 85: 1370-1375. https://doi.org/10.3168/jds.S0022-0302(02)74203-3

Barrón-Bravo OG, Gutiérrez-Chávez AJ, Ángel-Sahagún CA, Montaldo HH, Shepard L, Valencia-Posadas M, 2013. Losses in milk yield, fat and protein contents acccording to different levels of somatic cell count in dairy goats. Small Rumin Res 113: 421-431. https://doi.org/10.1016/j.smallrumres.2013.04.003

Bastan A, Salar S, Baki Acar D, Demírel MA, Cengiz M, Darbaz I, Bulut G, 2015. The effects of dry-off therapy on milk somatic cell count in Saanen goats. Turk J Vet Sci 39: 550-555. https://doi.org/10.3906/vet-1501-6

Baudry C, De Crémoux R, Chartier C, Perrin G, 1997. Incidence de la concentration cellulaire du lait de chèvre sur sa production et sa composition. Vet Rec 28: 277-286.

Becker CAM, Ramos F, Sellal E, Moine S, Pomarat F, Tardy F, 2012. Development of a multiplex real-time PCR for contagious agalactia diagnosis in small ruminants. J Microbiol Meth 90: 73-79. https://doi.org/10.1016/j.mimet.2012.04.020

Beltrán MC, Romero T, Althaus RL, Molina MP, 2013. Evaluation of the Charm MRL BLTET test for the detection of antibiotics in sheep and goat's milk. J Dairy Sci 96: 2737-2745. https://doi.org/10.3168/jds.2012-6044

Beltrán MC, Althaus RL, Berruga MI, Molina A, Molina MP, 2014a. Detection of antibiotics in sheep milk by receptor-binding assays. Int Dairy J 34: 184-189. https://doi.org/10.1016/j.idairyj.2013.09.006

Beltrán MC, Borrás M, Nagel O, Althaus RL, Molina MP, 2014b. Validation of receptor-binding assays to detect antibiotics in goat's milk. J Food Prot 77: 308-313. https://doi.org/10.4315/0362-028X.JFP-13-253

Beltrán MC, Althaus RL, Molina A, Berruga MI, Molina MP, 2015a. Analytical strategy for the detection of antibiotic residues in sheep and goat's milk. Span J Agric Res. 13 (1) e05-001. https://doi.org/10.5424/sjar/2015131-6522

Beltrán MC, Berruga MI, Molina A, Althaus RL, Molina MP, 2015b. Performance of current microbial tests for screening antibiotics in sheep and goat milk. Int Dairy J 41: 13-15. https://doi.org/10.1016/j.idairyj.2014.09.007

Bergonier D, Berthelot X, Poumarat F, 1997. Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control. Rev Sci Off Int Epiz 16: 848-873. https://doi.org/10.20506/rst.16.3.1062

Berry E, Broughan J, 2007. Use of the DeLaval cell counter (DCC) on goats'milk. J Dairy Res 74: 345-348. https://doi.org/10.1017/S0022029907002592

BOCYL, 2017. Resolution of 20 November, 2016, that approves the voluntary health program for surveillance and control against contagious agalactia in Castilla y León region. Boletín Oficial de Castilla y León (Spain) No. 25, 07/02/17), pp: 3507-3515. http://bocyl.jcyl.es/boletines/2017/02/07/pdf/BOCYL-D-07022017-14.pdf

Boonyayatra S, Fox LK, Sawant A, Gay JM, 2010. Effects of storage methods on the recovery of Mycoplasma species from milk samples. Vet Microbiol 144: 210-213. https://doi.org/10.1016/j.vetmic.2009.12.014

Capodifoglio E, Vidal AM, Lima JA, Bortoletto F, D'Abreu LF, Gonçalves AC, Vaz AC, Balieiro JC, Netto AS, 2016. Lipolytic and proteolytic activity of Pseudomonas spp. isolated during milking and storage of refrigerated raw milk. J Dairy Sci 99: 5214-5223. https://doi.org/10.3168/jds.2015-10453

Castro-Alonso A, Rodríguez F, De La Fe C, Espinosa de los Monteros A, Poveda JB, 2009. Correlating the immune response with the clinical-pathological course of persistent mastitis experimentally induced by Mycoplasma agalactiae in dairy goats. Res Vet Sci 86: 274-280. https://doi.org/10.1016/j.rvsc.2008.06.004

Clément V, Ceglowski C, De Crémoux R, Martin P, Rupp R, 2015. Somatic cell count in goat herds: Current situation and implementation of a genetic improvement program. Renc Rech Rumin 22: 45-48.

Comunian R, Paba A, Dupré I, Daga ES, Scintu MF, 2010. Evaluation of a microbiological indicator test for antibiotic detection in ewe and goat milk. J Dairy Sci 93: 5644-50. https://doi.org/10.3168/jds.2010-3474

Contreras A, Paape MJ, Di Carlo AL, Miller RH, Rainard P, 1997. Evaluation of selected antibiotic residue screening tests for milk form individual goats. J Dairy Sci 80: 1113-1118. https://doi.org/10.3168/jds.S0022-0302(97)76037-5

Contreras A, Luengo C, Sánchez A, Corrales J, 2003. The role of intramammary pathogens in dairy goats. Livest Prod Sci 79: 273-283. https://doi.org/10.1016/S0301-6226(02)00172-0

Corrales JC, Sánchez A, Luengo C, Poveda JB, Contreras A, 2004. Effect of clinical on the bulk tank milk somatic cell count in Murciano-Granadina goat herds. J Dairy Sci 87: 3165-3171. https://doi.org/10.3168/jds.S0022-0302(04)73451-7

Dario C, Bufano G, 1991. Investigation of mastitis occurrence in purebreed and crossbreed ewes. In: Breeding for disease resistance in farm animals; Owen JB, Axford RFE (eds). pp: 479. Commonw Agric Bur Int, Wallingford, UK.

de Garnica ML, Santos JA, Gonzalo C, 2011. Influence of storage and preservation on microbiological quality of silo ovine milk. J Dairy Sci 94: 1922-1927. https://doi.org/10.3168/jds.2010-3787

de Garnica ML, Gonzalo C, 2013. Results of analytical surveillance programs of bulk tank milk in consortium for ovine promotion flocks: differential bacteriology. In: Quality, safety and certification programs of consortium for ovine promotion milk; Gonzalo C (coord.). pp: 55-62. Consorcio de Promoción del Ovino, Villalpando, Zamora, Spain.

de Garnica ML, Linage B, Carriedo JA, De la Fuente LF, García-Jimeno MC, Santos JA, 2013a. Relationship among specific bacterial counts and total bacterial and somatic cell counts and factors influencing their variation in ovine bulk tank milk. J Dairy Sci 96: 1021-1029. https://doi.org/10.3168/jds.2012-5915

de Garnica ML, Linage B, Carriedo JA, Santos JA, Gonzalo C, 2013b. Staphylococcus aureus and Escherichia coli prevalence in ovine bulk tank milk. Small Rumin Res 115: 108-112. https://doi.org/10.1016/j.smallrumres.2013.09.001

de Garnica ML, Rosales RS, Gonzalo C, Santos JA, Nicholas RA, 2013c. Isolation, molecular characterization and antimicrobial susceptibilities of isolates of Mycoplasma agalactiae from bulk tank milk in an endemic area of Spain. J Applied Microbiol 114: 1575-1581. https://doi.org/10.1111/jam.12176

de Garnica ML, Valdezate S, Gonzalo C, Saez-Nieto JA, 2013d. Presence of the vanC1 gene in a vancomycin-resistant Enterococcus faecalis strain isolated form ewe bulk tank milk. J Med Microbiol 62: 494-495. https://doi.org/10.1099/jmm.0.052274-0

de Garnica ML, Sáez-Nieto JA, González R, Santos JA, Gonzalo C, 2014. Diversity of gram-positive catalase-negative cocci in sheep bulk tank milk by comparative 16S rDNA sequence analysis. Int Dairy J 34: 142-145. https://doi.org/10.1016/j.idairyj.2013.08.002

De la Fe C, Sánchez A, Gutiérrez A, Contreras A, Corrales JC, Assunçao P, Poveda C, Poveda JB, 2009. Effects on goat milk quality of the presence of Mycoplasma spp. in herds without symptoms of contagious agalactia. J Dairy Res 76: 20-23. https://doi.org/10.1017/S002202990800366X

De la Fe C, Amores J, Tardy F, Sagne E, Nouvel LX, Citti C, 2012. Unexpected genetic diversity of Mycoplasma agalactiae caprine isolates from an endemic geographically restricted area of Spain. BMC Vet Res 8: 146. https://doi.org/10.1186/1746-6148-8-146

De la Fuente F, Gonzalo C, Sánchez J, Rodríguez R, Carriedo J, Primitivo F, 2011. Genetic parameters of the linear body conformation traits and genetic correlations with udder traits, milk yield and composition, and somatic cell count in dairy ewes. Can J Anim Sci 91: 585-591. https://doi.org/10.4141/cjas2010-031

De los Campos G, Gianola D, Boettcher P, Moroni P, 2006. A structural equation model for describing relationships between somatic cell score and milk yield in dairy goats. J Anim Sci 84: 2934-2941. https://doi.org/10.2527/jas.2006-016

Deinhofer M, 1993. Staphylococcus spp. as mastitis-related pathogens in ewes and goats. Proc 5th Int Symp Machine Milking Small Ruminants, Budapest, Hungary; Kukovics S (ed). pp: 136-143.

Deinhofer M, Pernthaner A, 1995. Staphylococcus spp, as mastitis-related pathogens in goat milk. Vet Microbiol 43: 161-166. https://doi.org/10.1016/0378-1135(95)92532-G

EC, 2004. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off J Eur Comm, L226, pp: 22-82.

EC, 2010. Regulation (EU) No. 37/2010 of the European Parliament and of the Council of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residues limits in foodstuffs of animal origin. Off J Eur Comm, L15, pp: 1-72.

El-Saied UM, Carriedo JA, San Primitivo F, 1998. Heritability of test-day somatic cell counts and its relationship with milk yield and protein percentage in dairy ewes. J Dairy Sci 81: 2956-2961. https://doi.org/10.3168/jds.S0022-0302(98)75858-8

Espeche MC, Pellegrino M, Frola I, Larriestra A, Bogni C, Nader-Macías MEF, 2012. Lactic acid bacteria from raw milk as potentially beneficial to prevent bovine mastitis. Anaerobe 18: 103-109. https://doi.org/10.1016/j.anaerobe.2012.01.002

Fernández L, Arroyo R, Espinosa I, Marín M, Jiménez E, Rodríguez JM, 2014. Probiotics for human lactational mastits. Beneficial Microbes 5: 169-183. https://doi.org/10.3920/BM2013.0036

Flitman-Tene R, Mudahi-Orenstein S, Levisohn S, Yogev D, 2003. Variable lipoprotein genes of Mycoplasma agalactiae are activated in vivo by promoter addition via site-specific DNA inversions. Infect Immun 71: 3821-3830. https://doi.org/10.1128/IAI.71.7.3821-3830.2003

Fthenakis GC, 1994. Prevalence and aetiology of subclinical mastitis in ewes of southern Greece. Small Rum Res 13: 293-300. https://doi.org/10.1016/0921-4488(94)90078-7

Fthenakis GC, Jones JET, 1990a. The effect of experimentally induced subclinical mastitis on milk yield of ewes and on the growth of lambs. Br Vet J 146: 43-49. https://doi.org/10.1016/0007-1935(90)90075-E

Fthenakis GC, Jones JET, 1990b. The effect of inoculation of coagulase-negative staphylococci into the ovine mammary gland. J Comp Pathol 102: 211-219. https://doi.org/10.1016/S0021-9975(08)80126-0

Garde S, Arias R, Gaya P, Nuñez M, 2011. Occurrence of Clostridium spp. in ovine milk and Manchego cheese with late blowing defect: identification and characterization of isolates. Int Dairy J 21: 272-278. https://doi.org/10.1016/j.idairyj.2010.11.003

Gelasakis AI, Mavrogianni VS, Petridis IG, Vasileiou NGC, Fthenakis GC, 2015. Mastitis in sheep - The last 10 years and the future of research. Vet Microbiol 181: 136-146. https://doi.org/10.1016/j.vetmic.2015.07.009

Gómez-Martín A, Amores J, Paterna A, De la Fe C, 2013. Contagious agalactia due to Mycoplasma spp. in small dairy ruminants: epidemiology and prospects for diagnosis and control. Vet J 198: 48-56. https://doi.org/10.1016/j.tvjl.2013.04.015

Gonzalo C, Baro JA, Carriedo JA, San Primitivo F, 1993. Use of Fossomatic method to determine somatic cell counts in sheep milk. J Dairy Sci 76: 115-119. https://doi.org/10.3168/jds.S0022-0302(93)77330-0

Gonzalo C, Carriedo JA, Baro JA, San Primitivo F, 1994. Factors influencing variation of test day milk yield, somatic cell count, fat and protein in dairy sheep. J Dairy Sci 77: 1537-1542. https://doi.org/10.3168/jds.S0022-0302(94)77094-6

Gonzalo C, Tardáguila A, Ariznabarreta A, Romeo M, Montoro V, Pérez-Guzmán MD, Marco JC, 2000. Somatic cell counts in dairy livestock and control strategies: Situation in Spain. In: Mastitis and milk quality; Contreras A, Sánchez A, Romero JC (eds). pp: 145-151. Diego-Marin Publ, Murcia, Spain.

Gonzalo C, Ariznabarreta A, Carriedo JA, San Primitivo F, 2002. Mammary pathogens and their relationship with somatic cell count and milk yield losses in dairy ewes. J Dairy Sci 85: 1460-1467. https://doi.org/10.3168/jds.S0022-0302(02)74214-8

Gonzalo C, Martínez JR, Carriedo JA, San Primitivo F, 2003. Fossomatic cell-counting on ewe milk: comparison with direct microscopy and study of variation factors. J Dairy Sci 86: 138-145. https://doi.org/10.3168/jds.S0022-0302(03)73593-0

Gonzalo C, Boixo JC, Carriedo JA, San Primitivo F, 2004. Evaluation of rapid somatic cell counters under different analytical conditions in ovine milk. J Dairy Sci 87: 3623-3628. https://doi.org/10.3168/jds.S0022-0302(04)73500-6

Gonzalo C, Carriedo JA, Blanco MA, Beneitez E, Juárez MT, De La Fuente LF, San Primitivo F, 2005. Factors of variation influencing bulk tank somatic cell count in dairy sheep. J Dairy Sci 88: 969-974. https://doi.org/10.3168/jds.S0022-0302(05)72764-8

Gonzalo C, Carriedo JA, Beneitez E, Juárez MT, De la Fuente LF, San Primitivo F, 2006a. Bulk tank total bacterial count in dairy sheep: Factors of variation and relationship with somatic cell count. J Dairy Sci 89: 549-552. https://doi.org/10.3168/jds.S0022-0302(06)72117-8

Gonzalo C, Linage B, Carriedo JA, De la Fuente LF, San Primitivo F, 2006b. Evaluation of the overall accuracy of the DeLaval cell counter for somatic cell counts in ovine milk. J Dairy Sci 89: 4613-4619. https://doi.org/10.3168/jds.S0022-0302(06)72511-5

Gonzalo C, Linage B, Carriedo JA, De la Fuente LF, 2008. Evaluation of the overall accuracy of the DeLaval cell counter for somatic cell count in ovine milk: Effect of soak time in diluted and undiluted milk samples. J Dairy Sci 91: 3114-3118. https://doi.org/10.3168/jds.2008-1026

Gonzalo C, Carriedo JA, García-Jimeno MC, Pérez-Bilbao M, De la Fuente LF, 2010. Factors influencing variation of bulk milk antibiotic residue occurrence, somatic cell count, and total bacterial count in dairy sheep flocks. J Dairy Sci 93: 1587-1595. https://doi.org/10.3168/jds.2009-2838

Hantsis-Zacharov E, Halpern M, 2007. Culturable psychrotrophic bacterial communities in 473 raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 73: 7162-7168. https://doi.org/10.1128/AEM.00866-07

Heeschen W, 1987. Sanitary and health aspects of milk. In: World Animal Science, C3. Dairy-Cattle Production. pp: 173-250. Elsevier Sci Publ BV, NY.

IARC, 2002. Monograph on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer. WHO 82: 171. Lyon, France.

IDF, 2002. Milk. Determination of freezing point. Thermistor cryoscope method (reference method). FIL-IDF Standard no. 108:2002/ISO 5764. International Dairy Federation, Brussels, Belgium.

IDF, 2010. Current situation and compilation of commercially available screening methods for the detection of inhibitors/antibiotic residues in milk. IDF Bull, No. 42. International Dairy Federation, Brussels, Belgium.

Janstová B, Navrátilová P, Králová M, Vorlová L, 2013. The freezing point of raw and heat treated sheep milk and its variation during lactation. Acta Vet Brno 82: 187-190. https://doi.org/10.2754/avb201382020187

Kalogridou-Vassiliadou D, 1991. Mastitis-related pathogens in goat milk. Small Rumin Res 4: 203-212. https://doi.org/10.1016/0921-4488(91)90066-Y

Kang JW, Park SJ, Park HC, Hossain MA, Kim MA, Son SW, Lim CM, Kim TW, Cho BH, 2016. Multiresidue screening of veterinary drugs in meat, milk, egg, and fish using liquid chromatography coupled with ion trap time-of-flight mass spectrometry. Appl Biochem Biotechnol, pp: 1-18.

Kern G, Traulsen I, Kemper N, Krieter J, 2013. Analysis of somatic cell counts and risk factors associated with occurrence of bacteria in ewes of different primary purposes. Livestock Sci 157: 597-604. https://doi.org/10.1016/j.livsci.2013.09.008

Koop G, Nielen M, van Werven T, 2009. Bulk milk somatic cell counts are related to bulk milk total bacterial counts and several herd-level risk factors in dairy goats. J Dairy Sci 92: 4355-4364. https://doi.org/10.3168/jds.2009-2106

Koop G, Dik N, Nielen M, Lipman JJA, 2010a. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count. J. Dairy Sci 93: 2569-2573. https://doi.org/10.3168/jds.2009-2705

Koop G, van Werven T, Schulling HJ, Nielen M, 2010b. The effect of subclinical mastitis on milk yield in dairy goats. J Dairy Sci 93: 5809-5817. https://doi.org/10.3168/jds.2010-3544

Leitner G, Chaffer M, Shamay A, Shapiro F, Merin U, Ezra E, Saran A, Silanikove N, 2004a. Changes in milk composition as affected by subclinical mastitis in sheep. J Dairy Sci 87: 46-52. https://doi.org/10.3168/jds.S0022-0302(04)73140-9

Leitner G, Merin U, Silanikove N, 2004b. Changes in milk composition as affected by subclinical mastitis in goats. J Dairy Sci 87: 1719.1726.

Linage B, Gonzalo C, Carriedo JA, Asensio JA, Blanco MA, De la Fuente LF, San Primitivo F, 2007. Performance of blue-yellow screening test for antimicrobial detection in ovine milk. J Dairy Sci 90: 5374-5379. https://doi.org/10.3168/jds.2007-0245

Linage B, Gonzalo G, 2008. Influence of an intramammary infusion at drying-off of combined penethamate hydriodide, benethamine penicillin, and framycetin sulphate on intramammary infections and somatic cell counts in dairy sheep. J Dairy Sci 91: 3459-3466. https://doi.org/10.3168/jds.2007-0842

Linage B, Rodríguez-Calleja JM, Otero A, García-López ML, Santos J, 2012. Characterization of coagulase-positive stahylococci isolated from tank and silo ewe milk. J Dairy Sci 95: 1639-1644. https://doi.org/10.3168/jds.2011-4734

Linage B, García-Jimeno MA, Juárez MT, Crespo FJ, Gonzalo C, 2017. Etiology, somatic cell count, mammary lesion prevalence and milk yield losses in subclinical mastitis with severe inflammatory responses in dairy sheep. Proc XLII SEOC Congress, Alcalde MJ (coord.), Consejería de Agricultura Publ, Junta de Castilla y León, Salamanca, Spain, pp: 301-306.

Luengo C, Sánchez A, Corrales JC, Fernández C, Contreras A, 2004. Influence of intramammary infection and non-infection factors on somatic cell counts in dairy goats. J Dairy Res 71: 169-174. https://doi.org/10.1017/S0022029904000019

Manser PA, 1986. Prevalence, causes and laboratory diagnosis of subclinical mastitis in the goat. Vet Rec 118: 552-554. https://doi.org/10.1136/vr.118.20.552

Manso-Silván L, Perrier X, Thiaucourt F, 2007. Phylogeny of the Mycoplasma mycoides cluster based on analysis of five conserved protein-coding sequences and possible implications for the taxonomy of the group. Int J Syst Evol Microbiol 57: 2247-2258. https://doi.org/10.1099/ijs.0.64918-0

Marenda MS, Sagne E, Poumarat F, Citti C, 2005. Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species-specific sequences. Microbiology 151: 475-489. https://doi.org/10.1099/mic.0.27590-0

Martínez JR, Gonzalo C, Carriedo JA, San Primitivo F, 2003. Effect of freezing cell counting in ewe milk. J Dairy Sci 86: 2583-2587. https://doi.org/10.3168/jds.S0022-0302(03)73853-3

Mayer HK, Fiechter G, 2012. Physicochemical characteristics of goat's milk in Austria-seasonal variations and differences between six breeds. Dairy Sci Technol 92: 167-177. https://doi.org/10.1007/s13594-011-0047-0

McAuliffe L, Gosney F, Hlusek M, de Garnica ML, Spergser J, Kargl M, Rosengarten R, Ayling RD, Nicholas RAJ, Ellis RJ, 2011. Multilocus sequence typing of Mycoplasma agalactiae. J Med Microbiol 60: 803-811. https://doi.org/10.1099/jmm.0.028159-0

Molina MP, Althaus RL, Molina A, Fernández N, 2003. Antimicrobial agent detection in ewe's milk by the microbial inhibitor test brilliant black reduction test-BRT AiM®. Int Dairy J 13: 821-826. https://doi.org/10.1016/S0958-6946(03)00107-9

Montero A, Althaus RL, Molina A, Berruga I, Molina MP, 2005. Detection of antimicrobial agents by a specific microbiological method (Eclipse 100®) for ewe milk. Small Rumin Res 57: 229-237. https://doi.org/10.1016/j.smallrumres.2004.07.006

Moroni P, Pisoni G, Vimercati C, Rinaldi M, Castiglioni B, Cremonesi P, Boettcher P, 2005. Characterization of Staphylococcus aureus isolated form chronically infected dairy goats. J Dairy Sci 88: 3500-3509. https://doi.org/10.3168/jds.S0022-0302(05)73035-6

Nord K, Adnoy T, 1997. Effects of infection by caprine arthritis-encephalitis virus on milk production of goats. J Dairy Sci 80: 2391-2397. https://doi.org/10.3168/jds.S0022-0302(97)76190-3

Oravcová K, López-Enríquez L, Rodríguez-Lázaro D, Hernández M, 2009. Mycoplasma agalactiae p40 Gene, a novel marker for diagnosis of contagious agalactia in sheep by Real-Time PCR: Assessment of analytical performance and in-house validation using naturally contaminated milk samples. J Clin Microbiol 47: 445-450. https://doi.org/10.1128/JCM.01442-08

Paape MJ, Wiggans GR, Bannerman DD, Thomas DL, Sanders AH, Contreras A, Moroni P, Miller RH, 2007. Monitoring goat and sheep milk somatic cell counts. Small Rumin Res 68: 114-125. https://doi.org/10.1016/j.smallrumres.2006.09.014

Park YW, Juárez M, Ramos M, Haenlein GFW, 2007. Physico-chemical characteristics of goat and sheep milk. Small Rumin Res 68: 88-113. https://doi.org/10.1016/j.smallrumres.2006.09.013

Paterna A, Sánchez A, Gómez-Martín A, Corrales JC, de la Fe C, Contreras A, Amores J, 2013. In vitro antimicrobial susceptibility of Mycoplasma agalactiae strains isolated from dairy goats. J Dairy Sci 96: 7073-7076. https://doi.org/10.3168/jds.2012-6492

Pengov A, 2001. The role of coagulase-negative Staphylococcus spp. and associated somatic cell counts in the ovine mammary gland. J Dairy Sci 84: 572-574. https://doi.org/10.3168/jds.S0022-0302(01)74509-2

Persson K, Colditz IG, Flapper P, Franklin NA, Seow HF, 1996. Cytokine-induced inflammation in the ovine teat and udder. Vet Immunol Immunopathol 53: 73-85. https://doi.org/10.1016/0165-2427(96)05561-4

Persson-Waller K, Colditz IG, Seow HF, 1997. Accumulation of leucocytes and cytokines in the lactating ovine udder during mastitis due to Staphylococcus aureus and Escherichia coli. Res Vet Sci 62: 63-66. https://doi.org/10.1016/S0034-5288(97)90182-X

Peyraud A, Woubit S, Poveda JB, De la Fe C, Mercier P, Thiaucourt F, 2003. A specific PCR for the detection of Mycoplasma putrefaciens, one of the agents of the contagious agalactia syndrome of goats. Mol Cell Probes 17: 289-294. https://doi.org/10.1016/j.mcp.2003.07.006

Pirisi A, Lauret A, Dubeuf JP, 2007. Basic and incentive payments for goat and sheep milk in relation to quality. Small Rumin Res 68: 167-178. https://doi.org/10.1016/j.smallrumres.2006.09.009

Pleguezuelos FJ, De la Fuente LF, Gonzalo C, 2015. Variation in milk yield, contents and incomes according to somatic cell count in a large dairy goat population. J Adv Dairy Res 3: 3. http://dx.doi.org/10.4172/2329-888X.1000145

Poumarat F, Gautier-Bouchardon AV, Bergonier D, Gay E, Tardy F, 2016. Diversity and variation in antimicrobial susceptibility patterns over time in Mycoplasma agalactiae isolates collected from sheep and goats in France. J Applied Mycrobiol 120: 1208-1218. https://doi.org/10.1111/jam.13083

Poutrel B, de Crémoux R, Pillet R, Heuchel V, Ducelliez M, 1996. Relations entre statut infectieux des mamelles et numérations cellulaires du lait de chèvre. EAAP Publication 77: 61-64.

Poutrel B, de Crémoux R, Ducelliez M, Verneau D, 1997. Control of intramammary infections in goats : impact on somatic cell counts. J Anim Sci 75: 566-570. https://doi.org/10.2527/1997.752566x

Poveda JB, Nicholas R, 1998. Serological identification of micoplasma by growth and metabolic inhibition test. In: Methods in Molecular Biology: Mycoplasma protocols, Miles R & Nicholas RAJ (eds.). pp: 105-111, Humana Press Inc., Totowa. https://doi.org/10.1385/0-89603-525-5:105

Raynal-Ljutovac K, Pirisi A, de Crémoux R, Gonzalo C, 2007. Somatic cells of goat and sheep milk. Analytical, sanitary, productive and technological aspects. Small Rumin Res 68: 126-144. https://doi.org/10.1016/j.smallrumres.2006.09.012

Reindl A, Dzieciol M, Hein I, Wagner M, Zangerl P, 2014. Enumeration of clostridia in goat milk using a optimized membrane filtration technique. J Dairy Sci 97: 6036-6045. https://doi.org/10.3168/jds.2014-8218

Rota AM, Gonzalo C, Rodríguez PL, Rojas AI, Martín L, Tovar JJ, 1993. Effects of stage of lactation and parity on somatic cell counts in milk of Verata goats and algebraic models of their lactation curves. Small Rumin Res 12: 211-219. https://doi.org/10.1016/0921-4488(93)90085-V

Rubio R, Berruga MI, Molina MP, Molina A, 2008. Analysis of M1 aflatoxin in sheep milk by immunoenzymatic methods: Results in frozen samples. Proc XXXIII SEOC Congress, Alcalde MJ (coord), Consejería de Agricultura Publ, Junta de Andalucía, Almería, Spain. pp: 492-497.

Rubio R, Berruga MI, Román M, Molina A, 2009a. Evaluation of immunoenzymatic methods for the detection of aflatoxin M1 in ewe's milk. Food Control 20: 1049-1052. https://doi.org/10.1016/j.foodcont.2009.01.007

Rubio R, Berruga MI, Molina A, 2009b. Effect of preservatives on immunoenzymatic methods for the analysis of aflatoxin M1 in ewe's milk. Milchwissenschaft 64: 431-433.

Rubio R, Licón CC, Berruga MI, Molina MP, Molina A, 2011. Occurrence of aflatoxin M1 in the Manchego cheese supply chain. J Dairy Sci 94: 2775-2778. https://doi.org/10.3168/jds.2010-4017

Rupp R, Clément V, Piacere A, Robert-Granié C, Manfredi E, 2011. Genetic parameters for milk somatic cell scores and relationship with production and udder type in dairy Alpine and Saanen primiparous goats. J Dairy Sci 94: 3629-3634. https://doi.org/10.3168/jds.2010-3694

Sánchez, A, Corrales JC, Luengo C, Contreras A, 1999. Intramammary pathogens and somatic cell counts in dairy goats. EAAP Publication 95: 124-129.

Sánchez A, Contreras A, Corrales JC, Marco JC, 2001. Relationships between infection with caprine arthritis encephalitis virus, intramammary bacterial infection and somatic cell counts in dairy goats. Vet Rec 148: 711-714. https://doi.org/10.1136/vr.148.23.711

Sánchez A, Sierra D, Luengo C, Corrales JC, Morales CT, Contreras A, Gonzalo C, 2005. Influence of storage and preservation on Fossomatic cell count and composition of goat milk. J. Dairy Sci 88: 3095-3100. https://doi.org/10.3168/jds.S0022-0302(05)72991-X

Sánchez A, Sierra D, Luengo C, Corrales JC, De la Fe C, Morales CT, Contreras A, Gonzalo C, 2007. Evaluation of the MilkoScan FT 6000 milk analyzer for determining the freezing point of goat's milk under different analytical conditions. J Dairy Sci 90: 3153-3161. https://doi.org/10.3168/jds.2007-0038

Schoder G, Baumgartner W, Pernthaner A, 1993. Variation of somatic cell count in sheep and goat milk during the lactation period. Proc 5th Int Symp Machine Milking Small Ruminants, Kukovics S (ed.), Budapest, Hungary. pp: 99-103.

Scintu MF, Mannu L, Caria A, 2004. Presence of spores of Clostridium spp. in ewes' raw milk, in: Int Dairy Fed (ed.). The future of the sheep and goat dairy sectors (Special issue 200501/part 3), Zaragoza (Spain). pp: 187.

Sierra D, Sánchez A, Luengo C, Corrales JC, Morales CT, Contreras A, Gonzalo C, 2006. Temperature effects on Fossomatic cell counts in goats milk. Int Dairy J 16: 385-387. https://doi.org/10.1016/j.idairyj.2005.04.004

Sierra D, Sánchez A, Contreras A, Luengo C, Corrales JC, Morales CT, De la Fe C, Guirao I, Gonzalo C, 2009a. Detection limits of four antimicrobial residue screening test for ß-lactams in goat's milk. J Dairy Sci 92: 3585-3591. https://doi.org/10.3168/jds.2008-1981

Sierra D, Contreras A, Sánchez A, Luengo C, Corrales JC, Morales CT, De la Fe C, Guirao I, Gonzalo C, 2009b. Detection limits of non-ß-lactam antibiotics in goats's milk by microbiological residues screening tests. J Dairy Sci 92: 4200-4206. https://doi.org/10.3168/jds.2009-2101

Sierra D, Sánchez A, Contreras A, Luengo C, Corrales JC, De la Fe C, Guirao I, Morales CT, Gonzalo C, 2009c. Effect of storage and preservation on total bacterial counts determined by automated flow cytometry in bulk tank goat milk. J Dairy Sci 92: 4841-4845. https://doi.org/10.3168/jds.2008-1988

Silanikove N, Merin U, Leitner G, 2014. On effects of subclinical mastitis and stage of lactation on milk quality in goats. Small Rumin Res 122: 76-82. https://doi.org/10.1016/j.smallrumres.2014.07.018

Spanu C, Berger YM, Thomas DL, Ruegg PL, 2011. Impact of intramammary antimicrobial dry treatment and teat sanitation on somatic cell count and intramammary infection in dairy ewes. Small Rumin Res 97: 139-145. https://doi.org/10.1016/j.smallrumres.2011.03.005

Tatay-Dualde J, Sánchez A, Prats-van der Ham M, Gómez-Martín A, Paterna A, Corrales JC, De la Fe C, Contreras A, Amores J, 2015. Sensitivity of two methods to detect Mycoplasma agalactiae in goat milk. Ir Vet J 68: 21. https://doi.org/10.1186/s13620-015-0049-y

Tatay-Dualde J, Prats-Van Der Ham M, de la Fe C, Gómez-Martín A, Paterna A, Corrales JC, Contreras A, Sánchez A, 2016. Multilocus sequence typing of Mycoplasma mycoides subsp. capri to assess its genetic variability in a contagious agalactia endemic area. Vet Microbiol 191: 60-64. https://doi.org/10.1016/j.vetmic.2016.06.002

Tola S, Idini G, Manunta D, Galleri G, Angioi A, Rocchigiani AM, Leori G, 1996. Rapid and specific detection of Mycoplasma agalactiae by polymerase chain reaction. Vet Microbiol 51: 77-84. https://doi.org/10.1016/0378-1135(96)00023-5

Tola S, Angioi A, Rocchigiani AM, Idini G, Manunta D, Galleri G, Leori G, 1997. Detection of Mycoplasma agalactiae in sheep milk samples by polymerase chain reaction. Vet Microbiol 54: 17-22. https://doi.org/10.1016/S0378-1135(96)01269-2

Velthuis AGJ, van Asseldonk MAPM, 2011. Process audits versus product quality monitoring of bulk milk. J Dairy Sci 94: 235-249. https://doi.org/10.3168/jds.2010-3528

White CH, Bishop JR, Morgan DM, 1992. Microbiological methods for dairy products. In: Standard methods for the examination of dairy products, Marshall RT (ed.). pp: 59-323, Am Public Health Assoc (APHA), Washington, DC.

Woubit S, Manson-Silván L, Lorenzon S, Gaurivaud P, Poumarat F, Pellet M, Singh VP, Thiaucourt F, 2007. A PCR for the detection of mycoplasmas belonging to the Mycoplasma mycoides cluster: Application to the diagnosis of contagious agalactia. Mol Cell Probes 21: 391-399. https://doi.org/10.1016/j.mcp.2007.05.008

Published
2018-02-07
How to Cite
Gonzalo, C. (2018). Milk hygiene in small ruminants: A review. Spanish Journal of Agricultural Research, 15(4), e05R02. https://doi.org/10.5424/sjar/2017154-11727
Section
Animal health and welfare