Effect of fermented, hardened, and dehulled of chickpea (Cicer arietinum) meals in digestibility and antinutrients in diets for tilapia (Oreochromis niloticus)

Francisco J. Valdez-González, Roberto Gutiérrez-Dorado, Manuel García-Ulloa, Breidy L. Cuevas-Rodríguez, Hervey Rodríguez-González


Among the most typical feed sources for tilapia, plants represent a low-cost source in substituting for traditional high-cost feed ingredients. Fermentation, hardening and dehulling are common grains processing techniques to make plant nutrients available and more digestible to fish. Apparent digestibility coefficients (ADC) of dry matter and protein, and antinutrients (phytic acid and tannins) in fermented, hardened and dehulled chickpea (Cicer arietinum) meals were determined for juvenile Nile tilapia (Oreochromis niloticus). The highest ADC was obtained with processed (fermented, hardened and dehulled) chickpea meals compared with non-processed. Results indicated that fermentation increased the protein content by 13.1%, decreased the content of ash and phytic acid (47.5 and 45%, respectively), and increased the ingredient apparent digestibility of dry matter (ADM) by 23.2%, and the ingredient apparent digestibility of protein (ADP) by 41.9%. Dehulling meal increased the protein (5.7%) and lipid (6.4%) content of chickpea grains; decreased fiber, ash and tannin content (75.3%, 19.1%, and 84.5%, respectively); and increased ADM by 12.8%, and ADP by 10.4%. We conclude that fermented, hardened and dehulled chickpea meals represent a potential alternative in diets for juvenile O. niloticus.


aquafeeds; plant-based feed ingredients; bioprocessing; antinutritional compounds; tilapia

Full Text:



Abdel-Warith AA, Russel PM, Davies SJ, 2001. Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell, 1822). Aquac Res 32: 296-305. https://doi.org/10.1046/j.1355-557x.2001.00053.x

Adamidou S, Nengas I, Henry M, Ioakeu-Midoy N, Rigos G, Bell GJ, Jauncey K, 2011. Effects of dietary inclusion of peas, chickpeas and faba beans on growth, feed utilization and health of gilthead seabream (Sparus aurata). Aquacult Nutr 17: 288-296. https://doi.org/10.1111/j.1365-2095.2010.00762.x

Adewusi SRA, Osuntogun BA, 1991. The effects of cooking on tannin content, trypsin inhibitor activity and in vitro digestibility of some legume seeds in Nigeria. Niger Food J 9: 139-145.

Allan GL, Rowland SJ, 1994. The use of Australian oilseeds and grain legumes in aquaculture diets. Proc 3rd Asian Fisheries Forum; Chou LM et al. (eds.). pp: 667-670, Asian Fisheries Society Publication, Philippines.

Allan G, Rowland S, Parkinson S, Stone D, Jantrarotai W, 1999. Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: development of methods. Aquaculture 170: 131-145. https://doi.org/10.1016/S0044-8486(98)00397-4

Angulo-Bejarano P, Verdugo-Montoya N, Cuevas-Rodríguez E, Milán-Carrillo J, Mora-Escobedo R, López-Valenzuela J, Garzón-Tiznado J, Reyes-Moreno C, 2008. Tempeh flour from chickpea (Cicer arietnum L). Nutr Physicochem Prop Food Chem 106: 106-112. https://doi.org/10.1016/j.foodchem.2007.05.049

AOAC, 1995. Official methods of analysis, Official Analytical Chemists International, 16th ed. AOAC, Arlington, VA, USA.

Azaza MS, Wassim K, Mensi F, Abdelmouleh A, Brini B, Kraïem M, 2009. Evaluation of faba beans (Vicia faba L. var. minuta) as a replacement for soybean meal in practical diets of juvenile Nile tilapia Oreochromis niloticus. Aquaculture 287: 174-179. https://doi.org/10.1016/j.aquaculture.2008.10.007

Bairagi A, Sarkar-Ghosh K, Sen K, Ray A, 2004. Evaluation of nutritive value of Leucaena leucocephala leaf meal inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac Res 35: 436-446. https://doi.org/10.1111/j.1365-2109.2004.01028.x

Bolin DW, King RP, Klosterman EW, 1952. A simplified method for the determination of chromic oxide (Cr2O3) when used as an index substance. Science 116: 634-634. https://doi.org/10.1126/science.116.3023.634

Booth M, Allan G, Frances J, Parkinson S, 2001. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus IV. Effects of dehulling and protein concentration on digestibility of grain legumes. Aquaculture 196: 67-85. https://doi.org/10.1016/S0044-8486(00)00578-0

Bureau DP, Harris AM, Cho CY, 1999. Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture 180: 345-358. https://doi.org/10.1016/S0044-8486(99)00210-0

Chan CR, Lee DN, Cheng YH, Hsieh DJY, Weng CF, 2008. Feed deprivation and re-feeding on alterations of proteases in tilapia Oreochromis mossambicus. Zool Stud 47: 207-215.

Collins SA, Desai AR, Mansfield GS, Hill JE, Kessel van AG, Drew MD, 2012. The effect of increasing inclusion rates of soybean, pea and canola meals and their protein concentrates on the growth of rainbow trout: Concepts in diet formulation and experimental design for ingredient evaluation. Aquaculture 212: 2-18. https://doi.org/10.1016/j.aquaculture.2012.02.018

Cuevas-Hernández B, Perez-Quilantan JM, Galan-Wong LJ, Alanis-Guzmán MG, Maiti RK, 1999. Fermentation with Rhizopus oligosporus increases nutritional value of pearl millet Pennisetum glaucum grains. Phyton Buenos Aires 65: 91-95.

Cuevas-Rodríguez E, Milán-Carrillo J, Mora-Escobedo R, Cárdenas-Valenzuela O, Reyes-Moreno C, 2004. Quality protein maize (Zea mays L) tempeh flour though solid state fermentation process. Lebensm Wiss Technol 37: 59-67. https://doi.org/10.1016/S0023-6438(03)00134-8

Davies SJ, Abdel-Warith AA, Gouveia A, 2011. Digestibility characteristics of selected feed ingredients for developing bespoke diets for Nile tilapia culture in Europe and North America. J World Aquacult Soc 42: 388-398. https://doi.org/10.1111/j.1749-7345.2011.00478.x

Deshpande S, Cheryan M, 1984. Changes in soybean lipids during tempeh fermentation. Food Chem 50: 171-175.

Dioundick QB, Stom D, 1990. Effects of dietary á-cellulose on the juvenile tilapia, Oreochromis mossambicus (Peters). Aquaculture 91: 311-315. https://doi.org/10.1016/0044-8486(90)90196-T

Drew MD, Borgeson TL, Thiessen DL, 2007. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Tech 138: 118-136. https://doi.org/10.1016/j.anifeedsci.2007.06.019

Egounlety M, Aworth OC, 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J Food Eng 56: 249-254. https://doi.org/10.1016/S0260-8774(02)00262-5

El-Saidy DM, Gaber MM, 2003. Replacement of fish meal with a mixture of different plant protein sources in juvenile Nile tilapia Oreochromis niloticus (L.) diets. Aquac Res 34: 1119-1127. https://doi.org/10.1046/j.1365-2109.2003.00914.x

Furukawa A, Tsukahara H, 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility ok fish fed. Bull Jap Soc Sci Fish 32(6): 502-508. https://doi.org/10.2331/suisan.32.502

Glencross B, Evans D, Hawkins W, Jones B, 2004. Evaluation of dietary inclusion of yellow lupin (Lupinus luteus) kernel meal on the growth, feed utilization and tissue histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 235: 411-422. https://doi.org/10.1016/j.aquaculture.2003.09.022

Glencross BD, Booth MA, Allan GL, 2007. A feed is only as good as its ingredients a review of ingredient evaluation strategies for aquaculture feeds. Aquacult Nutr 13: 17-34. https://doi.org/10.1111/j.1365-2095.2007.00450.x

Gonzales JM, Huston AH, Rosinski ME, Wu YV, Powless TF, Brown PB, 2007. Evaluation of fish meal-free diets for first feeding Nile tilapia, Oreochromis niloticus. J Appl Aquac 19: 89-99. https://doi.org/10.1300/J028v19n03_06

Guillaume J, Kaushik S, Bergot P, Metailler R, 2004. Nutrición y alimentación de peces y crustáceos. Mundi Prensa, Madrid, España. pp: 353-365.

Guimarães IG, Pezzato LE, Barros MM, Tachibana L, 2008. Nutrient digestibility of cereal grain products and by-products in extruded diets for Nile tilapia. J World Aquacult Soc 39: 781-789. https://doi.org/10.1111/j.1749-7345.2008.00214.x

Guzmán-Uriarte L, Sánchez-Magaña L, Angulo-Meza E, Cuevas-Rodríguez EO, Gutiérrez-Dorado R, Mora-Rochín S, Milán-Carrillo J, Valdez-Ortiz A, Reyes-Moreno C, 2013. Solid state bioconversion for producing common bean (Phaseolus vulgaris L.) functional flour with high antioxidant activity and antihypertensive potential. Food Nutr Sci 4: 480-490. https://doi.org/10.4236/fns.2013.44061

Jukanti A, Gaur P, Gowda C, Chibbar R, 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Brit J Nutr 108: 11-26. https://doi.org/10.1017/S0007114512000797

Köprücü K, Özdemir Y, 2005. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 250: 308-316. https://doi.org/10.1016/j.aquaculture.2004.12.003

Lanna EA, Pezzato LU, Furuya WM, Vicentini CA, Cecon PR, Barros MM, 2004. Fibra bruta e óleo em dietas práticas para alevinos de tilápia do Nilo (Oreochromis niloticus). Rev Bras Zootecn 33: 2177-2185. https://doi.org/10.1590/S1516-35982004000900001

Lara-Flores M, Granados-Puerto SG, Olivera-Castillo L, Pereira-Pacheco FE, Del Río-Rodríguez RE, Olvera-Novoa MA, 2007. Nutritional evaluation of treated X'pelon seed (Vigna unguiculata (L.) Walp) in the feeding of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Tech 138: 178-188. https://doi.org/10.1016/j.anifeedsci.2007.06.023

Latta M, Eskin M, 1980. A simple and rapid colorimetric method for phytate evaluation. J Agric Food Chem 28: 1313-1315. https://doi.org/10.1021/jf60232a049

Laurena AC, García VV, Mendoza EM, 1986. Effects of soaking in aqueous acidic and alkali solutions on removal of polyphenols and in vitro digestibility of cowpea. Plant Foods Hum Nutr 6: 107-118. https://doi.org/10.1007/BF01092138

Maynard LA, Loosli JK, Hintz HF, Warner RG 1981. Animal nutrition. McGraw-Hill Book Company, NY, 289 pp.

McGoogan B.B., Reigh RC 1996: Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets. Aquaculture 141: 233-244. https://doi.org/10.1016/0044-8486(95)01217-6

Medina-Godoy S, Ambriz-Pérez DL, Fuentes-Gutiérrez CI, Germán-Báez LJ, Gutiérrez-Dorado R, Reyes-Moreno C, Valdez-Ortiz A, 2011. Angiotensin-converting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hard-to-cook chickpeas. J Sci Food Agr 9: 1974-81.

Montoya-Mejía M, Hernández-Llamas A, García-Ulloa M, Nolasco-Soria H, Gutiérrez-Dorado R, Rodríguez-González H, 2016. Apparent digestibility coefficient of chickpea, maize, high-quality protein maize, and beans diets in juvenile and adult Nile tilapia (Oreochromis niloticus). Rev Bras Zootecn 48: 427-432. https://doi.org/10.1590/S1806-92902016000800001

Mugula JK, Lyimo M, 2000. Evaluation of the nutritional and acceptability sorghum based tempeh as potential weaning food in Tanzania. Int J Food Sci Nutr 51: 269-277. https://doi.org/10.1080/09637480050077158

Paredes-López O, González-Castañeda J, Cárabez-Trejo A, 1991. Influence of solid substrate fermentation on the chemical composition of chickpea. J Ferment Bioeng 71: 58-62. https://doi.org/10.1016/0922-338X(91)90304-Y

Phumee P, Wei WY, Ramachandran S, Hashim R, 2011. Evaluation of soybean meal in the formulated diets for juvenile Pangasianodon hypophthalmus (Sauvage, 1878). Aquacult Nutr 17: 214-222. https://doi.org/10.1111/j.1365-2095.2009.00729.x

Pinto LGQ, Pezzato LE, Miranda EC, Barros MM, Furuya WM, 2000. Ação do tanino na digestibilidade de dietas pela tilápia-do-nilo (Oreochromis niloticus). Acta Sci 22: 677-681.

Price ML, Butler LG, Featherston WR, Rogler JC, 1978. Detoxification of high-tannin sorghum grain. Nutr Rep Int 17: 229-236.

Ramachandran S, Ray AK, 2004. Inclusion of extruded grass pea, Lathyrussativus seed meal in compound diet for rohu Labeo rohita (Hamilton, 1822) fingerlings. Acta Ichtyol Pisc 34: 205-208. https://doi.org/10.3750/AIP2004.34.2.08

Reddy NR, Pierson MD, Sathe SK Salunkhe DKM, 1989. Phytates in cereals and legumes. CRC Press. Boca Raton, USA. 152 pp.

Reichert RD, Fleming SE, Schwab DJ 1980. Tannin deactivation and nutritional improvement of sorghum by anaerobic storage of H2O-, HCl-, or NaOH treated grain. J Agr Food Chem 28: 824-829. https://doi.org/10.1021/jf60230a045

Reyes-Moreno C, Paredes-López O, 1993. Hard-to-cook phenomenon in common beans. Crit Rev Food Sci 33: 226-286. https://doi.org/10.1080/10408399309527621

Reyes-Moreno C, Romero-Urías C, Milán-Carrillo J, Valdez-Torres B, Zárate-Márquez E, 2000. Optimization of the solid state fermentation process to obtain tempeh from hardened chickpeas (Cicer arietum L). Plant Foods Hum Nutr 55: 219-228. https://doi.org/10.1023/A:1008192214018

Reyes-Moreno C, Cuevas-Rodríguez EO, Milán-Carrillo J, Cárdenas-Valenzuela OG, Barrón-Hoyos J, 2004. Solid state fermentation process for producing chickpea (Cicer arietnum) tempeh flour. J Sci Food Agr 84: 271-278. https://doi.org/10.1002/jsfa.1637

Ruiz-Terán F, Owens JD, 1996. Chemical and enzymic changes during the fermentation of bacteria-free soya bean Tempe. J Sci Food Agr 71: 523-530. https://doi.org/10.1002/(SICI)1097-0010(199608)71:4<523::AID-JSFA613>3.0.CO;2-R

Sánchez-Magaña LM, Cuevas-Rodríguez EO, Gutiérrez-Dorado R, Ayala-Rodríguez AE, Valdez-Ortiz A, Milán-Carrillo J, Reyes-Moreno C, 2014. Solid-state bioconversion of chickpea (Cicer arietinum L.) by Rhizopus oligosporus to improve total phenolic content, antioxidant activity and hypoglycemic functionality. Int J Food Sci Nutr 65: 558-564. https://doi.org/10.3109/09637486.2014.893284

Silva TS, Moro GV, Silva TB, Dairiki JK, Cyrino JE, 2013. Digestibility of feed ingredients for the striped surubim Pseudoplatystoma reticulatum. Aquacult Nutr 19: 491-498. https://doi.org/10.1111/anu.12000

Tacon AGJ, Metian M, 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 285: 146-158 https://doi.org/10.1016/j.aquaculture.2008.08.015

Tiril SU, Karayucel I, Alagil F, Dernekbasi S, Yagci FB, 2009. Evaluation of extruded chickpea, common bean and red lentil meals as protein source in diets for juvenile rainbow trout (Oncorhynchus mykiss). J Anim Vet Adv 8: 2079-2086.

Valdez-González FJ, Gutiérrez-Dorado R, García-Ulloa M, Rodríguez-González H, 2013. Revisión del efecto de los antinutrientes y la fibra de leguminosas en la alimentación para peces. Cienc Nicolaita 51: 21-40.

Valdez-González FJ, García-Ulloa M, Hernández-Llamas A, Rodríguez-Montes de Oca GA, Rodríguez-González H, 2016. Effect of shrimp head silage hydrosylate and distiller's dried corn grain on digestibility and growth of red tilapia (Oreochromis mossambicus). Anim Nutr Feed Tech 16: 51-60. https://doi.org/10.5958/0974-181X.2016.00005.6

Vielma J, Lall SP, Koskela J, Schöner FJ. Mattila P, 1998, Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture 163: 309-323. https://doi.org/10.1016/S0044-8486(98)00240-3

Williams PC, Singh U, 1987. The chickpea-nutrimental quality and evaluation of quality in breeding programmes. In: The chickpea; Saxena MC & Singh KB, (eds). pp: 324-356. CAB Int, UK.

Wilson RP, 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124: 67-80. https://doi.org/10.1016/0044-8486(94)90363-8

Yigit N, Olmez M, 2011. Effects of cellulase addition to canola meal in tilapia (Oreochromis niloticus L.) diets. Aquacult Nutr 17: 494-500. https://doi.org/10.1111/j.1365-2095.2010.00789.x

Yu HR, Zhang Q, Cao H, Wang XZ, Huang GQ, Zhang BR, Fan J, Liu SW, Li W, Cui Y, 2013. Apparent digestibility coefficients of selected feed ingredients for juvenile snakehead, Ophiocephalus argus. Aquacult Nutr 19: 139-147. https://doi.org/10.1111/j.1365-2095.2012.00947.x

Yuan YC, Lin YC, Yang HJ, Gong Y, Gong SY, Yu DH, 2013. Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult Nutr 19: 74-83. https://doi.org/10.1111/j.1365-2095.2012.00939.x

DOI: 10.5424/sjar/2018161-11830