Statistical methods for identifying anisotropy in the Spodoptera frugiperda spatial distribution

  • Daniela T. Nava Universidade Tecnológica Federal do Paraná (UTFPR), 19 Cristo Rei St, Toledo-PR
  • Orietta Nicolis Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso, 2340000
  • Miguel A. Uribe-Opazo Universidade Estadual do Oeste do Paraná (Unioeste), 2069 Universitária St, Cascavel- PR
  • Fernanda De Bastiani Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Recife-PR
Keywords: cluster processes, corn pests, spatial point pattern, directional K function, wavelet based test

Abstract

Corn is a very important agricultural product, however, some pests may cause damage to the corn productivity such as Spodoptera frugiperda, which prevents the plant from growing in a regular manner. Since the indiscriminate use of the pesticide may cause an increasing resistance of the insect besides an environmental damage, it is important to estimate the areas and the dominant directions where the insect may propagate. The main aim of this work was to study the spreading of the fall armyworm in a commercial agricultural area in the South of Brazil. For this, we considered a set including the location of each corn plant attacked by the insect. In particular, we assumed that the spatial locations given by the geographic coordinates constitute a spatial point pattern following a stationary Poisson point process. In order to detect the presence of possible dominant directions in the distribution of the fall armyworm infestation we studied the anisotropic features of the data by using some second-order spatial point-pattern analysis techniques such as the K directional test, the wavelet-based test, and the quadrat counting test. All the results showed that spatial distribution of fall armyworm may follow a clustered Poisson point process with the presence of an evident anisotropy mainly due to the shape and the distance between corn plants of the experimental area. These preliminary results could be used for reducing and optimizing the use of pesticides with a consequent decrease of the environmental impact.

Downloads

Download data is not yet available.

References

Baddeley A, Turner R, 2005. spatstat: An R package for analyzing spatial point patterns. J Stat Softw 12 (6): 1-42. https://doi.org/10.18637/jss.v012.i06

Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D, 2006. Case studies in spatial point process modelling. Springer, NY. 310 pp. https://doi.org/10.1007/0-387-31144-0

Baddeley A, Rubak E, Turner R, 2015. Spatial point patterns - Methodology and applications with R. CRC Press, Florida. 810 pp.

Cruz I, Figueiredo MLC, Oliveria AC, Vasconcelos CA, 1999. Damage of Spodoptera frugiperda (Smith) in different maize genotypes cultivated in soil under three levels of aluminium saturation. Int J Pest Manage 45 (4): 293-296. https://doi.org/10.1080/096708799227707

Daley DJ, Vere-Jones D, 2002. An introduction to the theory of point processes, 2nd ed. Springer, NY, 536 pp.

Diggle P, 2003. Statistical analysis of spatial point patterns. 2nd ed. Oxford Univ. Press Inc., NY, 155 pp.

Farias PRS, Barbosa JC, Busoli AC, Overal WL, Miranda VS, Ribeiro SM, 2008. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geostatistics. Neotrop Entomol 37 (3): 321-327. https://doi.org/10.1590/S1519-566X2008000300012

Guan Y, Sherman M, Calvin JA, 2006. Assessing isotropy for spatial point processes. Biometrics 62: 119-125. https://doi.org/10.1111/j.1541-0420.2005.00436.x

Hernández-Mendoza JL, López-Barbosa EC, Garza-González E, Mayek-Pérez N, 2008. Spatial distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize landraces grown in Colima, Mexico. Int J Trop Insect Sci 28 (3): 126-129. https://doi.org/10.1017/S1742758408096112

Illian J, Penttinen A, Stoyan H, Stoyan D, 2008. Statistical analysis and modelling of spatial point patterns. John Wiley & Sons Ltd., England, 560 pp.

Kumar P, 1995. A wavelet based methodology for scale-space anisotropic analysis. Geophys Res Lett 22 (20): 2777-2780. https://doi.org/10.1029/95GL02934

Mateu J, Nicolis O, 2015. Multiresolution analysis of lineary oriented spatial point patterns. J Stat Comput Simul 85: 621-637. https://doi.org/10.1080/00949655.2013.838565

Neupauer RM, Powell KL, 2005. A fully-anisotropic Morlet wavelet to identify dominant orientations in a porous medium. Comp Geosci 31: 465-471. https://doi.org/10.1016/j.cageo.2004.10.014

Nicolis O, Mateu J, D'Ercole R, 2010. Testing for anisotropy in spatial point processes. Proc 5th Int Workshop on Spatio-Temporal Modelling (METMA5). Gonzalez-Manteiga et al. (Eds.), Publisher Unidixital. ISBN: 978-840934272-8-3.

Niu Y, Meagher Jr RL, Yang F, Huang F, 2013. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1f protein and corn leaf tissue containing single and pyramided Bt genes. Fla Entomol 96 (3): 701-713. https://doi.org/10.1653/024.096.0302

R Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Rajala TA, 2017. Analysis of anisotropy in point patterns using second order statistics. https://github.com/antiphon/Kdirectional

Rajala TA, Särkkä A, Redenbach C, Sormani M, 2016. Estimating geometric anisotropy in spatial point patterns. Spat Stat 15 (1): 100-114. https://doi.org/10.1016/j.spasta.2015.12.005

Redenbach C, Särkkä A, Freitag J, Schladitz K, 2009. Anisotropy analysis of pressed point processes. Adv Stat Anal 93 (3): 237-261. https://doi.org/10.1007/s10182-009-0106-5

Ribeiro Jr PJ, Viola DN, Demétrio CGB, Manly BF, Fernandes OA, 2009. Spatial pattern detection modelling of thrips (Thrips tabaci) on onion fields. Scientia Agricola 66 (1): 90-99. https://doi.org/10.1590/S0103-90162009000100013

Rios ES, Martins ICF, Noronha MP, Silva JA, Silva Filho JG, Badji CA, 2014. Spatial distribution of Spodoptera frugiperda in the wasteland of southern Pernambuco state, Brazil. Amazon J Agr Environ Sci 57: 297-304. https://doi.org/10.4322/rca.ao1461

Ripley BD, 1976. The second-order analysis of stationary point processes. J Appl Probab 13 (2): 255-266. https://doi.org/10.2307/3212829

Ripley BD, 1977. Modelling spatial patterns. J Roy Stat Soc 39 (2): 172-212.

Ripley BD, 1981. Spatial Statistics. John Wiley & Sons, NJ. 272 pp. https://doi.org/10.1002/0471725218

Rowlingson B, Diggle P, 2016. splancs: Spatial and space-time point pattern analysis. R package version 2.01-39. https://CRAN.R-project.org/package=splancs

Sena Jr DG, Pinto FAC, Queiroz DM, Viana PA, 2003. Fall armyworm damaged maize plant identification using digital images. Biosyst Eng 85 (4): 449-454. https://doi.org/10.1016/S1537-5110(03)00098-9

Soil Survey Staff, 2014. Keys to soil taxonomy, 12th ed. USDA-Nat Resour Conserv Serv, Washington.

Spósito MB, Amorin L, Ribeiro Jr PJ, Bassanezi RB, Krainski ET, 2007. Spatial pattern of trees affected by black spot in citrus groves in Brazil. Plant Dis 91 (1): 36-40. https://doi.org/10.1094/PD-91-0036

Yang F, Huang F, Qureshi JA, Leonard BR, Niu Y, Zhang L, Wangila DS, 2013. Susceptibility of Louisiana populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) to transgenic Agrisure®Viptera™3111 corn. Crop Prot 50 (1): 37-39. https://doi.org/10.1016/j.cropro.2013.04.002

Yu SJ, Nguyen SN, Albo-Elghar GE, 2003. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pest Biochem Physiol 77 (1): 1-11. https://doi.org/10.1016/S0048-3575(03)00079-8

Published
2018-04-26
How to Cite
Nava, D. T., Nicolis, O., Uribe-Opazo, M. A., & De Bastiani, F. (2018). Statistical methods for identifying anisotropy in the Spodoptera frugiperda spatial distribution. Spanish Journal of Agricultural Research, 16(1), e1003. https://doi.org/10.5424/sjar/2018161-11916
Section
Plant protection