Microbial fertilizers: A comprehensive review of current findings and future perspectives

Sandra Stamenković, Vladimir Beškoski, Ivana Karabegović, Miodrag Lazić, Nada Nikolić


Plant growth promoting microorganisms (PGPM) are an important group of microbial inoculants, which exist in rhizosphere and have the ability to inhabit the root of the plants and improve their development. Their positive influence is achieved through solubilization of phosphorus, nitrogen fixation, production of plant nutrients and phytohormones, protection from pathogens and recovery from stressful environmental conditions. This is the main reason for the increasing usage of many PGPMs which formulations are commonly known as microbial fertilizers. Microbial fertilizers represent an attractive replacement for chemical fertilizers that are polluting the environment. They are used to increase the crop yield in an eco-friendly way while relying on sustainable agriculture principles. The biggest problem nowadays is the very poor quality of such products, which results in the lack of confidence and makes commercialization much more difficult. In order to increase production and hence the commercialization of microbial fertilizers, desired quality and stability should be achieved. For this reason, many researches are done in this particular field. In order to develop an optimal product, it is important to know and understand the process, including the physiology of bacteria and plants, mass multiplication technological processes as well as the existing formulation and the specific effect on the desired plant. For this purpose, the aim of this review is to indicate the significance of microbial fertilizers and their beneficial effects on the plants, as well as to give a brief survey of the different aspects of production processes with a special emphasis on mass multiplication.


biofertilizers; rhizosphere; inoculum; plant-growth-promoting-microorganisms; bioreactors; formulation

Full Text:



Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB, 2016. Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34 (11): 847-850. https://doi.org/10.1016/j.tibtech.2016.05.005

Ahemad M, 2015. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13 (1): 51-58. https://doi.org/10.1016/j.jgeb.2015.02.001

AL-Mashhadani MKH, Wilkinson SJ, Zimmerman WB, 2015. Airlift bioreactor for biological applications with microbubble mediated transport processes. Chem Eng Sci 137: 243-253. https://doi.org/10.1016/j.ces.2015.06.032

Alikhani HA, Saleh-Rastin N, Antoun H, 2006. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287 (1-2): 35-41. https://doi.org/10.1007/s11104-006-9059-6

Avdalović J, Beškoski V, Gojgić-Cvijović G, Mattinen ML, Stojanović M, Zildzović S, Vrvić MM, 2015. Microbial solubilization of phosphorus from phosphate rock by iron-oxidizing Acidithiobacillus sp. B2. Miner Eng 72: 17-22. https://doi.org/10.1016/j.mineng.2014.12.010

Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C, 2005. Microbial co-operation in the rhizosphere. J Exp Bot 56 (417): 1761-1778. https://doi.org/10.1093/jxb/eri197

Bashan Y, Trejo A, de-Bashan LE, 2011. Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47 (8): 963-969. https://doi.org/10.1007/s00374-011-0555-3

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP, 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant Soil 378 (1-2): 1-33. https://doi.org/10.1007/s11104-013-1956-x

Basu S, Rabara R, Negi S, 2017. Towards a better greener future - An alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene 12: 43-49. https://doi.org/10.1016/j.plgene.2017.07.004

Beškoski VP, Gojgić-Cvijović G, Milić J, Ilić M, Miletić S, Šolević T, Vrvić MM, 2011. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) - A field experiment. Chemosphere 83 (1): 34-40. https://doi.org/10.1016/j.chemosphere.2011.01.020

Beškoski VP, Gojgić-Cvijović GĐ, Milić JS, Ilić MV, Miletić SB, Jovaničević BS, Vrvić MM, 2012. Bioremedijacija zemljišta kontaminiranog naftom i naftnim derivatima: mikroorganizmi, putanje razgradnje, tehnologije. Hem Ind 66 (2): 275-289.

Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L, 1998. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27 (3): 225-237. https://doi.org/10.1111/j.1574-6941.1998.tb00539.x

Bjelić D, 2014. Karakterizacija i efektivnost bakterija promotora biljnog rasta izolovanih iz rizosfere kukuruza. Doctoral thesis. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia.

Boddey RM, Baldani VLD, Baldani JI, Döbereiner J, 1986. Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95 (1): 109-21. https://doi.org/10.1007/BF02378857

Bora T, Özaktan H, Göre E, Aslan E, 2004. Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152 (8-9): 471-475. https://doi.org/10.1111/j.1439-0434.2004.00877.x

Cakmak I, 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247 (1): 3-24. https://doi.org/10.1023/A:1021194511492

Chebotar VK, Malfanova NV, Shcherbakov AV, Ahtemova GA, Borisov AY, Lugtenberg B, Tikhonovich IA, 2015. Endophytic bacteria in microbial preparations that improve plant development (Review) . Appl Biochem Micro 51 (3): 283-289. https://doi.org/10.1134/S0003683815030059

Davis R, Duane G, Kenny ST, Cerrone F, Guzik MW, Babu RP, Casey E, O'Connor KE, 2015. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol Bioeng 112 (4): 725-733. https://doi.org/10.1002/bit.25474

de Carvalho ALU, de Oliveira FHPC, Mariano R de LR, Gouveia ER, Souto-Maior AM, 2010. Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14. Brazilian Arch Biol Technol 53 (3): 643-652. https://doi.org/10.1590/S1516-89132010000300020

Díaz-Barrera A, Aguirre A, Berrios J, Acevedo F, 2011. Continuous cultures for alginate production by Azotobacter vinelandii growing at different oxygen uptake rates. Process Biochem 46 (9): 1879-1883. https://doi.org/10.1016/j.procbio.2011.06.022

Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, et al., 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28: 871-879.

Doran PM, 2013. Bioprocess engineering principles, 2nd Ed. Academic Press, London, UK, 919 pp.

Duta FP, De França FP, Sérvulo EFC, Lopes LMDA, Costa ACA Da, Barros A, 2004. Effect of process parameters on production of a biopolymer by Rhizobium sp. Appl Biochem Biotechnol 114 (1-3): 639-652. https://doi.org/10.1385/ABAB:114:1-3:639

Egamberdieva D, Adesemoye AO, 2016. Improvement of crop protection and yield in hostile agroecological conditions with PGPR-based biofertilizer formulations. In: Bioformulations: for sustainable agriculture; Arora NK, Mehnaz S, Balestrini R (eds.), pp: 199-211. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_11

Etesami H, Alikhani HA, 2017. Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. Eur J Plant Pathol 147 (1): 7-14. https://doi.org/10.1007/s10658-016-0981-z

Figueiredo M do VB, Bonifacio A, Rodrigues AC, de Araujo FF, Stamford NP, 2016. Beneficial microorganisms: Current challenge to increase crop performance. In: Bioformulations: for sustainable agriculture; Arora NK, Mehnaz S, Balestrini R (eds.), pp: 53-70. Springer, New Delhi.

Finkel OM, Castrillo G, Paredes SH, Gonzalez IS, Dangl JL, 2017. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38: 155-163. https://doi.org/10.1016/j.pbi.2017.04.018

Garcia-Fraile P, Menendez E, Rivas R, 2015. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2 (3): 183-205. https://doi.org/10.3934/bioeng.2015.3.183

Garcia-Ochoa F, Gomez E, 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol Adv 27 (2): 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006

García-de-Salamone IE, Funes JM, Di Salvo LP, Escobar-Ortega JS, D'Auria F, Farrando L, Fernandez-Scavino A, 2012. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61: 196-204. https://doi.org/10.1016/j.apsoil.2011.12.012

Gholami A, Shahsavani S, Nezarat S, 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad Sci Eng Technol 3 (1): 9-14.

Glick BR, 2015. Beneficial plant-bacterial interactions. Springer Int Publ, Cham, Switzerland. pp: 1-28. https://doi.org/10.1007/978-3-319-13921-0

Gojgić-Cvijović GD, Milić JS, Šolević TM, Beškoski VP, Ilić MV, Djokić LS, Narančić TM, Vrvić MM, 2012. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: A laboratory study. Biodegradation 23 (1): 1-14. https://doi.org/10.1007/s10532-011-9481-1

Gonzalez-Dugo V, Durand JL, Gastal F, 2010. Water deficit and nitrogen nutrition of crops. A review. Agron Sustain Dev 30 (3): 529-544. https://doi.org/10.1051/agro/2009059

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L, 2014. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5 (4): 355-377.

Govedarica M, Milošević N, Jarak M, Kuzevski J, Krstanović S, Krunić V, 2002. Bakterizacija kao mera borbe protiv rizomanije šećerne repe. Zbornik radova instituta za ratarstvo i povrtarstvo 36: 33-42.

Grobelak A, Napora A, Kacprzak M, 2015. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84: 22-28. https://doi.org/10.1016/j.ecoleng.2015.07.019

Haddoudi I, Sendi Y, Batnini M, Ben Romdhane S, Mhadhbi H, Mrabet M, 2017. The bean rhizosphere Pseudomonas aeruginosa strain RZ9 strongly reduces Fusarium culmorum growth and infectiveness of plant roots. Span J Agric Res 15 (2): e1003. https://doi.org/10.5424/sjar/2017152-10595

Hajnal-Jafari T, Jarak M, Djuric S, Stamenov D, 2012. Effect of co-inoculation with different groups of beneficial microorganisms on the microbiological properties of soil and yield of maize (Zea mays L.). Ratar i Povrt 49 (2): 183-188. https://doi.org/10.5937/ratpov49-1462

Hassen AI, Bopape FL, Sanger LK, 2016. Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Microbial inoculants in sustainable agricultural productivity; Singh D Singh H, Prabha R (eds.). pp: 23-36. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_2

Herrmann L, Lesueur D, 2013. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97 (20): 8859-8873. https://doi.org/10.1007/s00253-013-5228-8

Huo Z, Zhang N, Xu Z, Li S, Zhang Q, Qiu M, Jong X, Huang Q, Zhang R, Shen Q, 2012. Optimization of survival and spore formation of Paenibacillus polymyxa SQR-21 during bioorganic fertilizer storage. Bioresour Technol 108: 190-195. https://doi.org/10.1016/j.biortech.2011.12.137

Ibarra-Galeana JA, Castro-Martínez C, Fierro-Coronado RA, Armenta-Bojórquez AD, Maldonado-Mendoza IE, 2017. Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Ann Microbiol 67 (12): 801-811. https://doi.org/10.1007/s13213-017-1308-9

Ilić D, 2016. Gajenje azotofiksirajućih fosfosolubilizirajućih bakterija u kontrolisanim uslovima fermentora u cilju biofertilizacije zemljišta. Master's thesis. University of Nis, Fac of Sci & Math, Dept Biol & Ecol, Niš, Serbia.

Jarak M, Đurić S, Gluvić N, 2010. Efekat primene inokulacije boranije na parametre prinosa i mikrobiološku aktivnost u rizosferi. Letopis naucnih radova Popljoprivrednog Fakulteta 34 (1): 80-89.

Kavamura VN, Santos SN, Silva JL da, Parma MM, Ávila LA, Visconti A, Zucchi T, Domingues T, Rodrigo G, Andreote FD, de Melo IS, 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168 (4): 183-191. https://doi.org/10.1016/j.micres.2012.12.002

Kekez B, Gojgić-Cvijović G, Jakovljević D, Pavlović V, Beškoski V, Popović A, Vrvić MM, Nikolić V, 2016. Synthesis and characterization of a new type of levan-graft-polystyrene copolymer. Carbohydr Polym 154: 20-29. https://doi.org/10.1016/j.carbpol.2016.08.001

Keswani C, Bisen K, Singh V, Sarma BK, Singh HB, 2016. Formulation technology of biocontrol agents: Present status and future prospects. In: Bioformulations: for sustainable agriculture; Arora NK, Mehnaz S, Balestrini R (eds.). pp: 35-52. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_2

Kiełbus-Rąpała A, Karcz J, 2011. Mass transfer in multiphase mechanically agitated systems. In: Mass transfer in multiphase systems and its applications; El-Amin M (ed). pp: 93-116. InTech. https://doi.org/10.5772/15558

Kiprovski B, 2012. Biohemijske i agronomske karakteristike biljaka soje, kukuruza i šećerne repe inokulisanih korisnim i štetnim mikroorganizmima. Doctoral thesis. Univ Novi Sad, Fac Agr, Novi Sad, Serbia.

Kirkby E, 2012. Introduction, definition and classification of nutrients. In: Marschner's mineral nutrition of higher plants; Marschner P, Marschner H (eds.). pp: 3-5. Acad Press, San Diego, CA, USA. https://doi.org/10.1016/B978-0-12-384905-2.00001-7

Lawton K, Cook RL, 1954. Potassium in plant nutrition. Adv Agron 6: 253-303. https://doi.org/10.1016/S0065-2113(08)60387-9

Leo Daniel AE, Venkateswarlu B, Suseelendra D, Praveen Kumar G, Mir Hassan Ahmed SK, Meenakshi T, Uzma S, Sravani P, Lakshmi Narasu M, 2013. Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J Plant Physiol Pathol 1 (2): 1-5.

Liu M, Liu X, Cheng B Sen, Ma XL, Lyu XT, Zhao XF, Ju YL, Min Z, Fang YL, 2016. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Span J Agric Res 14 (4): e1106. https://doi.org/10.5424/sjar/2016144-9714

Liu S, 2012. Bioprocess engineering: Kinetics, biosystems, sustainability and reactor design. Elsevier, Amsterdam.

Lockwood JL, Schippers B, 1984. Evaluation of siderophores as a factor in soil mycostasis. Trans Br Mycol Soc 82 (4): 589-594. https://doi.org/10.1016/S0007-1536(84)80097-2

Lugtenberg B, 2015. Life of microbes in the rhizosphere. In: Principles of plant-microbe interactions, microbes for sustainable agriculture; Lugtenberg B (ed.). pp: 7-16. Springer Int Publ, Cham, Switzerland. https://doi.org/10.1007/978-3-319-08575-3_3

Lugtenberg B, Kamilova F, 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63 (1): 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918

Malusá E, Sas-Paszt L, Ciesielska J, 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012: 491206. https://doi.org/10.1100/2012/491206

Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB, 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl Biochem Biotechnol 118 (1-3): 243-251. https://doi.org/10.1385/ABAB:118:1-3:243

Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M 2015. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 5 (1): 71. https://doi.org/10.1186/s13568-015-0154-z

Meena B, Radhajeyalakshmi R, Marimuthu T, Vidhyasekaran P, Velazhahan R, 2002. Biological control of groundnut late leaf spot and rust by seed and foliar applications of a powder formulation of Pseudomonas fluorescens. Biocontrol Sci Technol 12 (2): 195-204. https://doi.org/10.1080/09583150120124450

Miletić SB, Spasić SD, Avdalović J, Beškoski V, Ilić M, Gojgić-Cvijović G, Vrvić MM, 2014. The Effect of humic acids on zymogenous microbial consortia growth. Clean 42 (9): 1280-8123. https://doi.org/10.1002/clen.201300034

Milić J, Beškoski V, Ilić M, Ali S, Gojgić-Cvijović G, Vrvić M, 2009. Bioremediation of soil heavily contaminated with crude oil and its products: Composition of the microbial consortium. J Serbian Chem Soc 74 (4): 455-460. https://doi.org/10.2298/JSC0904455M

Milošević N, Govedarica M, 2001. Mogućnost primene biofertilizatora u proizvodnji ratarskih neleguminoznih biljaka. Zbornik radova naučnog instituta za ratarstvo i povrtarstvo 35: 53-65.

Mishra J, Arora NK, 2016. Bioformulations for plant growth promotion and combating phytopathogens: A sustainable approach. In: Bioformulations: for sustainable agriculture; Arora NK, Mehnaz S, Balestrini R (eds.). pp: 3-33. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_1

Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Jaideep KB, Bhatt JC, 2011. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47 (1): 35-43. https://doi.org/10.1016/j.ejsobi.2010.11.005

Monteiro SMS, Clemente JJ, Carrondo MJT, Cunha E, 2014. Enhanced spore production of Bacillus subtilis grown in a chemically defined medium. Adv Microbiol 4 (8): 444-454. https://doi.org/10.4236/aim.2014.48049

Mrkovački N, Mezei S, Čačić N, Kovačev L, 2007. Effectiveness of different types of sugarbeet inoculation. Zbornik radova instituta za ratarstvo i povrtarstvo 43 (1): 201-207.

Mrkovački N, Jarak M, Ivica D, Jocković Đ, 2012. Importance of PGPR application and its effect on microbial activity in maize rhizosphere. Ratar i Povrt 49 (3): 335-344. https://doi.org/10.5937/ratpov49-1915

Mumtaz MZ, Ahmad M, Jamil M, Hussain T, 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202: 51-60. https://doi.org/10.1016/j.micres.2017.06.001

Nadeem SM, Naveed M, Ahmad M, Zahir ZA, 2015. Rhizosphere bacteria for crop production and improvement of stress tolerance: Mechanisms of action, applications, and future prospects. In: Plant microbes symbiosis: Applied facets; Arora NK (ed). pp: 1-36. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_1

Nakkeeran S, Fernando WGD, Siddiqui ZA, 2005. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: PGPR: Biocontrol and biofertilization, Siddiqui ZA (ed.). pp: 257-296. Springer-Verlag, Berlin/Heidelberg, Germany.

NRC, 1989. Alternative agriculture. National Reseach Council, Nat Acad Press, Washington DC, 464 pp.

Ona O, Van Impe J, Prinsen E, Vanderleyden J, 2005. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246 (1): 125-132. https://doi.org/10.1016/j.femsle.2005.03.048

Owen D, Williams AP, Griffith GW, Withers PJA, 2015. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86: 41-54. https://doi.org/10.1016/j.apsoil.2014.09.012

Öztürk S, Çalık P, Özdamar TH, 2016. Fed-batch biomolecule production by Bacillus subtilis: A state of the art review. Trends Biotechnol 34 (4): 329-45. https://doi.org/10.1016/j.tibtech.2015.12.008

Perrenoud S, 1990. Potassium and plant health. International Potash Institute, Bern, Switzerland. 364 pp.

Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S, 2015. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87 (1): 45-52. https://doi.org/10.1016/j.plaphy.2014.12.014

Qin S, Zhou W, Li Z, Lyu D, 2016. Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. seedlings. Span J Agric Res 14 (2): e0803. https://doi.org/10.5424/sjar/2016142-6848

Rainey PB, 1991. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol Res 95 (6): 699-704. https://doi.org/10.1016/S0953-7562(09)80817-4

Ramadan MMMA, Šolević Knudsen T, Antić M, Beškoski VP, Vrvić MM, Shwarzbauer J, Jovanicevic B, 2013. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut). J Serb Chem Soc 78 (7): 1035-1043. https://doi.org/10.2298/JSC120829106A

Ramadhan SH, Matsui T, Nakano K, Minami H, 2013. High cell density cultivation of Pseudomonas putida strain HKT554 and its application for optically active sulfoxide production. Appl Microbiol Biotechnol 97 (5): 1903-1907. https://doi.org/10.1007/s00253-012-4445-x

Reis A, Da Silva TL, Kent CA, Kosseva M, Roseiro JC, Hewitt CJ, 2005. Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in batch and continuous cultures using multi-parameter flow cytometry. J Biotechnol 115 (2): 199-210. https://doi.org/10.1016/j.jbiotec.2004.08.005

Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R, 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61: 264-272. https://doi.org/10.1016/j.apsoil.2012.01.006

Sachin D, 2009. Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bamboo) and maize (Zea mays). Plant Biofront 1 (1): 37-46.

Shaikh SS, Sayyed RZ, 2015. Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Plant microbes symbiosis: Applied facets; Arora NK (ed.). pp: 337-351. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_18

Sharma SB, Sayyed RZ, Trivedi MH, Gobi T, 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2 (1): 1-14. https://doi.org/10.1186/2193-1801-2-587

Soni SK, Singh R, Singh M, Awasthi A, Wasnik K, Kalra A, 2014. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Arch Environ Contam Toxicol 66 (4): 616-627. https://doi.org/10.1007/s00244-014-0003-0

Souza R de, Ambrosini A, Passaglia LMP, 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38 (4): 401-419. https://doi.org/10.1590/S1415-475738420150053

Szilagyi-Zecchin VJ, Mógor ÁF, Figueiredo GGO, 2016. Strategies for characterization of agriculturally important bacteria. In: Microbial inoculants in sustainable agricultural productivity; Singh DP, Singh HB, Prabha R (eds.). pp: 1-21. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_1

Tabatabaei S, Ehsanzadeh P, Etesami H, Alikhani HA, Glick BR, 2016. Indole-3-acetic acid (IAA) producing pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Span J Agric Res 14 (1): e0802. https://doi.org/10.5424/sjar/2016141-8859

Tavares MB, Souza RD, Luiz WB, Cavalcante RCM, Casaroli C, Martins EG, Ferreira RC, Ferreira LC, 2013. Bacillus subtilis endospores at high purity and recovery yields: Optimization of growth conditions and purification method. Curr Microbiol 66 (3): 279-285. https://doi.org/10.1007/s00284-012-0269-2

Tortora ML, Díaz-Ricci JC, Pedraza RO, 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193 (4): 275-286. https://doi.org/10.1007/s00203-010-0672-7

Trujillo-Roldán MA, Valdez-Cruz NA, Gonzalez-Monterrubio CF, Acevedo-Sánchez EV, Martínez-Salinas C, García-Cabrera RI, Gamboa-Suasnavart RA, Marín-Palacio LD, Villegas J, Blancas-Cabrera A, 2013. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Appl Microbiol Biotechnol 97 (22): 9665-9674. https://doi.org/10.1007/s00253-013-5199-9

Ullah A, Heng S, Munis MFH, Fahad S, Yang X, 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot 117: 28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001

Validov SZ, Kamilova F, Lugtenberg BJJ, 2009. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48 (1): 6-11. https://doi.org/10.1016/j.biocontrol.2008.09.010

van Peer, Neimann GJ, Schippers B, 1991. Induced resistance and phytoalexin accumulation in biological Control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS4117r. Phytopathology 81 (7): 728-734. https://doi.org/10.1094/Phyto-81-728

Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E, 2015. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99 (12): 4983-4996. https://doi.org/10.1007/s00253-015-6656-4

Vidhyalakshmi R, Valli NC, Narendra Kumar G, Sunkar S, 2016. Bacillus circulans exopolysaccharide: Production, characterization and bioactivities. Int J Biol Macromol 87: 405-414. https://doi.org/10.1016/j.ijbiomac.2016.02.001

Vijayabharathi R, Sathya A, Gopalakrishnan S, 2016. A renaissance in plant growth-promoting and biocontrol agents by endophytes. In: Microbial inoculants in sustainable agricultural productivity; Singh DP, Singh HB, Prabha R (eds.). pp: 37-60. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_3

Wang M, Zheng Q, Shen Q, Guo S, 2013. The critical role of potassium in plant stress response. Int J Mol Sci 14 (4): 7370-7390. https://doi.org/10.3390/ijms14047370

Wani SA, Chand S, Wani MA, Ramzan M, Hakeem KR, 2016. Azotobacter chroococcum - A potential biofertilizer in agriculture: An overview. In: Soil Science: Agricultural and environmental prospectives; Hakeem KR, Akhtar J, Sabir M (eds.) pp: 333-348. Springer Int Publ, Cham, Switzerland. https://doi.org/10.1007/978-3-319-34451-5_15

Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y, 2011. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48 (2): 152-159. https://doi.org/10.1016/j.apsoil.2011.03.013

White PJ, 2012. Ion uptake mechanisms of individual cells and roots: Short-distance transport. In: Marschner's mineral nutrition of higher plants, Marschner P, Marschner H (eds.). pp: 7-47. Acad Press, San Diego. https://doi.org/10.1016/B978-0-12-384905-2.00002-9

Wu Z, Du G, Chen J, 2003. Effects of dissolved oxygen concentration and DO-stat feeding strategy on CoQ 10 production with Rhizobium radiobacter. World J Microbiol Biotechnol 19: 925-28. https://doi.org/10.1023/B:WIBI.0000007322.19802.57

Yadav BK, Akhtar MS, Panwar J, 2015. Rhizospheric plant-microbe interactions: Key factors to soil fertility and plant nutrition. In: Plant microbes symbiosis: Applied facets; Arora NK (ed.). pp: 127-145. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_6

Yazdani M, Bahmanyar MA, Pirdashti H, Ali M, 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol 25 (1): 90-92.

Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A, 2015. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective. Sci Hortic 193: 231-239. https://doi.org/10.1016/j.scienta.2015.07.020

Zhang J, Greasham R, 1999. Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51 (4): 407-421. https://doi.org/10.1007/s002530051411

Zhao JL, Zhou LG, Wu JY, 2010. Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45 (9): 1517-1522. https://doi.org/10.1016/j.procbio.2010.05.034

DOI: 10.5424/sjar/2018161-12117