Descriptive epidemiology of endemic Classical Swine Fever in Cuba

Osvaldo Fonseca, Liani Coronado, Laymara Amarán, Carmen L. Perera, Yosdany Centelles, Damarys N. Montano, Pastor Alfonso, Octavio Fernández, Kleber R. Santoro, María T. Frías-Lepoureau, María I. Percedo


In Cuba, Classical Swine Fever (CSF) has become an endemic disease since 1993 with several outbreaks each year despite the compulsory vaccination program implemented. To deepen the disease characterization is essential for improving the CSF control measures and to achieve its eradication. The aim of this study was to describe the epidemiological characteristics of CSF occurrences in Cuba during a seven-year period within the endemic situation. Data on CSF occurrence from January 2010 to December 2016 were analyzed. The seven-year period shows a tendency of the number of affected premises to increase (r=0.31, p=0.005) over time (month). Directional distribution (1SD ellipse) indicated a great dispersion of affected premises by year across the country with a trend to a higher occurrence to the west. It was demonstrated by the negative correlation (r=-0.893, p=0.007) between the longitude of the mean center of the ellipses over the years. The Kernel density indicated that the disease was spatially distributed across the whole country, but four hot spots were found in the western (Pinar del Río and Artemisa) and eastern (Guantánamo and Holguín) regions. The clinical sign most frequently reported in affected premises was fever, followed by loss of appetite, conjunctivitis, and diarrhea. The most frequent observed clinical signs were non-specific, which complicates the disease recognition in the field. The obtained results have a practical importance for improving the efficiency of the CSF control program implemented in the country and contribute to enhance epidemiological surveillance taking into account the risk based principles.


swine health; clinical signs; spatial distribution; temporal trend

Full Text:



Allepuz A, Casal J, Pujols J, Jové R, Selga I, Porcar J, Domingo M, 2007. Descriptive epidemiology of the outbreak of classical swine fever in Catalonia (Spain), 2001/02. Vet Rec 160 (12): 398-403.

Bailey TC, Carvalho MS, Lapa TM, Souza WV, Brewer MJ, 2005. Modeling of under-detection of cases in disease surveillance. Ann Epidemiol 15 (5): 335-343.

Blome S, Staubach C, Henke J, Carlson J, Beer M, 2017. Classical Swine Fever—An updated review. Viruses 9 (4): E86.

Coronado L, Liniger M, Muñoz-González S, Postel A, Pérez LJ, Pérez-Simó M, Perera CL, Frías-Lepoureau MT, Rosell R, Grundhoff A, et al., 2017. Novel poly-uridine insertion in the 3′ UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Vet Microbiol 201: 103-112.

De Smit A, Eble P, de Kluijver E, Bloemraad M, Bouma A, 2000. Laboratory experience during the classical swine fever virus epizootic in the Netherlands in 1997-1998. Vet Microbiol 73 (2-3): 197-208.

Díaz de Arce H, Núñez JI, Ganges L, Barreras M, Teresa Frías M, Sobrino F, 1999. Molecular epidemiology of classical swine fever in Cuba. Virus Res 64 (1): 61-67.

Díaz de Arce H, Ganges L, Barrera M, Naranjo D, Sobrino F, Frias M, Nunez J, 2005. Origin and evolution of viruses causing classical swine fever in Cuba. Virus Res 112 (1-2): 123-131.

DSA, 2016. Libro de traslados del Sistema de Vigilancia Epizootiológica de la Dirección de Salud Animal de la República de Cuba. Cuba, Work Document.

Elbers ARW, Stegeman A, Moser H, Ekker HM, Smak JA, Pluimers FH, 1999. The classical swine fever epidemic 1997-1998 in the Netherlands: descriptive epidemiology. Prev Vet Med 42 (3-4): 157-184.

Fonseca O, 2016. Caracterización espaciotemporal y factores de riesgo del comportamiento endémico de la peste porcina clásica en Cuba. Doctoral Thesis, Agricultural University of Havana, Cuba.

Fonseca O, Percedo MI, Rutili D, Alfonso P, Conte A, Ferrer E, Abeledo MA, Fernandez O, Calistri P, 2014. Simulation model for assessing the risk of classical swine fever spreading in Pinar del Río province, Cuba. 2nd Int Conf on Animal Health Surveillance (ICAHS2), Havana (Cuba), 7-9 May.

Fonseca O, Grisi-Filho JHH, Santoro KR, Alfonso P, Abeledo MA, Fernández O, Blanco M, Rabelo Y, Percedo MI, 2015a. Network analysis of pig industry in a proposed zone for Classical Swine Fever eradication in Cuba. OIE Global Conf on Biol Threat Reduction. Paris, 30 June-2 July.

Fonseca O, Percedo MI, Grisi-Filho JH, Alfonso P, Abeledo MA, Fernández O, Blanco M, Gutiérrez Y, Santoro KR, 2015b. Network analysis applied to classical swine fever epidemiology in Cuba. Int Cong Eur Soc of Vet Virol (ESVV). Montpellier (France), 31 Aug-03 Sept.

Fonseca O, Santoro K, Alfonso P, Abeledo M, Fernández O, Blanco M, Rabelo Y, Percedo M, 2015c. Spatial analysis of Classical Swine Fever outbreaks in Pinar del Río province, Cuba. 14th Int Symp on Vet Epidemiol Econ (ISVEE14), Merida, Yucatan (Mexico) 3-7 Nov.

Fonseca O, Santoro KR, Abeledo MA, Capdevila Y, Fernández O, Alfonso P, Ayala J, Percedo MI, 2016. Spatiotemporal distribution of classical swine fever in Cuba, 2007-2013. Rev Salud Anim 38 (1): 30-38.

Frías Lepoureau M, 2003. Reemergence of Classical Swine Fever in Cuba 1993-1997. Rev Salud Anim 25 (1): 1-4.

Ganges L, Barrera M, Díaz de Arce H, Vega A, Núñez J, Sobrino F, Frías M, 2007. Antigenic, biological and molecular characterization of the Cuban CSFV isolate "Margarita". Rev Salud Anim 29 (3): 182-192.

IMV, 2005. Programa de Prevención y Control de la peste porcina clásica en la República de Cuba. Ministerio de la Agricultura Press, Cuba.

Jamovi_Project, 2017. Jamovi vers 0.8 [Computer Software].

Jones SG, Kulldorff M, 2012. Influence of spatial resolution on space-time disease cluster detection. PLoS ONE 7 (10): e48036.

Kauhl B, Pilot E, Rao R, Gruebner O, Schweikart J, Krafft T, 2015. Estimating the spatial distribution of acute undifferentiated fever (AUF) and associated risk factors using emergency call data in India. A symptom-based approach for public health surveillance. Health & Place 31: 111-119.

Koenen F, Van Caenegem G, Vermeersch J, Vandenheede J, Deluyker H, 1996. Epidemiological characteristics of an outbreak of classical swine fever in an area of high pig density. Vet Rec 139 (15): 367-371.

Kulldorff M, 2014. SatScan v9.3: Software for the spatial and space-time scan statistics. Information Management Services Inc, Silver Spring, MD, USA.

Moennig V, 2015. The control of classical swine fever in wild boar. Front Microbiol 6: 1211.

Monger VR, Stegeman JA, Dukpa K, Gurung RB, Loeffen WL, 2015. Evaluation of oral bait vaccine efficacy against classical swine fever in village backyard pig farms in Bhutan. Transb Emerg Dis 63 (6): e211-e218.

Muñoz-González S, Ruggli N, Rosell R, Pérez LJ, Frías-Leuporeau MT, Fraile L, Montoya M, Cordoba L, Domingo M, Ehrensperger F, Summerfield A, Ganges L, 2015. Postnatal persistent infection with classical Swine Fever virus and its immunological implications. PLoS ONE 10 (5): e0125692.

Mur Gil L, 2015. Nuevas estrategias para la prevención y control de la peste porcina africana. Doctoral Thesis. Veterinary School. Universidad Complutense de Madrid, Spain.

Oganesyan AS, Petrova ON, Korennoy FI, Bardina NS, Gogin AE, Dudnikov SA, 2012. African swine fever in the Russian Federation: Spatio-temporal analysis and epidemiological overview. Virus Res 173 (1): 204-211.

Pannhorst K, Frohlich A, Staubach C, Meyer D, Blome S, Becher P, 2015. Evaluation of an Erns-based enzyme-linked immunosorbent assay to distinguish Classical swine fever virus-infected pigs from pigs vaccinated with CP7_E2alf. J Vet Diagn Invest 27 (4): 449-460.

Pérez LJ, Diaz de Arce H, Perera CL, Rosell R, Frias MT, Percedo MI, Tarradas J, Dominguez P, Nunez JI, Ganges L, 2012. Positive selection pressure on the B/C domains of the E2-gene of classical swine fever virus in endemic areas under C-strain vaccination. Infect Genet Evol 12 (7): 1405-1412.

Pfeiffer D, Robinson T, Stevenson M, Stevens K, Rogers D, Clements A, 2008. Spatial analysis in epidemiology. Oxford University Press, NY. FAO, Rome.

Pinto J, Depner KR, Vargas-Terán M, 2011. Overview of classical swine fever: learning from regional disease control strategies. EMPRES Transboundary Animal Diseases Bulletin 39: 46-51. FAO Anim Prod & Health Div.

Postel A, Pérez LJ, Perera CL, Schmeiser S, Meyer D, Meindl-Boehmer A, Rios L, Austermann-Busch S, Frias-Lepoureau MT, Becher P, 2015. Development of a new LAMP assay for the detection of CSFV strains from Cuba: A proof-of-concept study. Arch Virol 160 (6): 1435-1448.

Postel A, Schmeiser S, Perera CL, Rodríguez LJP, Frias-Lepoureau MT, Becher P, 2013. Classical swine fever virus isolates from Cuba form a new subgenotype 1.4. Vet Microbiol 161 (3-4): 334-338.

Silva MNF, Silva DMF, Leite AS, Gomes ALV, Freitas AC, Pinheiro-Junior JW, Castro RS, Jesus ALS, 2016. Identification and genetic characterization of classical swine fever virus isolates in Brazil: A new subgenotype. Arch Virol 162 (3): 817-822.

Smith SC, Bruce CW, 2008. CrimeStat III user workbook. The National Institute of Justice, Washington DC.

Thrusfield M, 2013. Veterinary epidemiology. Elsevier.

Ward MP, Maftei D, Apostu C, Suru A, 2008. Geostatistical visualisation and spatial statistics for evaluation of the dispersion of epidemic highly pathogenic avian influenza subtype H5N1. Vet Res 39 (3): 22.

DOI: 10.5424/sjar/2018162-12487