Detection of Bactrocera oleae (Diptera: Tephritidae) DNA in the gut of the soil species Pseudoophonus rufipes (Coleoptera: Carabidae)

Alice Albertini, Sónia A. P. Santos, Fátima Martins, José A. Pereira, Teresa Lino-Neto, Ruggero Petacchi, Paula Baptista

Abstract


Pest control service provided by natural enemies of Bactrocera oleae, the key pest of the olive tree, is nowadays recognized as fundamental. B. oleae has developed resistance to common insecticides, and negative effects both on consumers’ health and non-target species are the major drawbacks of conventional control strategies. Carabid beetles are potential B. oleae pupae predators, but their predation on field still need to be assessed. We tested adult Pseudoophonus rufipes, a species known to be active in olive orchard when pest pupae are abundant in the soil, in order to detect B. oleae pupae consumption at different post feeding times for both male and female carabids. An already existing protocol was used for detecting B. oleae mtDNA sequences of the cytochrome oxidase subunit I gene in carabids’ gut, and its versatility improved. B. oleae mtDNA was detected up to 20 h after pupa ingestion with a high percentage of success, without significant differences between sexes and pair primers used. Prey DNA extraction was tested from both dissected and non-dissected carabids, obtaining comparable results. The trapping system used to collect carabids for molecular assays and the new elements introduced in the protocol represent cost-effective solutions that may be beneficial for future laboratory trials and, mostly, for the analysis of field-collected predators. Fostering the investigation of soil predators in olive orchard may increase the design of conservation control strategies against B. oleae.

Keywords


fruit fly; gut content; olive; PCR; biological control; pitfall trap; post feeding time

Full Text:

PDF HTML XML

References


Aebi A, Brown PM, De Clercq P, Hautier L, Howe A, Ingels B, Ravn HP, Sloggett JJ, Zindel R, Thomas A, 2011. Detecting arthropod intraguild predation in the field. BioControl 56: 429-440. https://doi.org/10.1007/s10526-011-9378-2

Albertini A, Pizzolotto R, Petacchi R, 2017. Carabid patterns in olive orchards and woody semi-natural habitats: first implications for conservation biological control against Bactrocera oleae. BioControl 62: 1-13. https://doi.org/10.1007/s10526-016-9780-x

Albertini A, Marchi S, Ratti C, Burgio G, Petacchi R, Magagnoli S., 2018. Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis. BioControl 63: 227-239. https://doi.org/10.1007/s10526-017-9860-6

Amvrazi EG, Albanis TA, 2009. Pesticide residue assessment in different types of olive oil and preliminary exposure assessment of Greek consumers to the pesticide residues detected. Food Chem 113: 253-261. https://doi.org/10.1016/j.foodchem.2008.06.073

Augustinos AA, Stratikopoulos EE, Zacharopoulou A, Mathiopoulos KD, 2002. Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Mol Ecol Notes 2: 278-280. https://doi.org/10.1046/j.1471-8286.2002.00222.x

Avgin SS, Luff ML, 2009. Biodiversity of carabid beetles (Coleoptera: Carabidae) from crops in Turkey. Proc Entomol Soc Wash 111: 326-334. https://doi.org/10.4289/0013-8797-111.2.326

Bateman MA, 1972. The ecology of fruit flies. Annu Rev Entomol 17: 493-518. https://doi.org/10.1146/annurev.en.17.010172.002425

Boreau de Roincé C, Lavigne C, Ricard JM, Franck P, Bouvier JC, Garcin A, Symondson WOC, 2012. Predation by generalist predators on the codling moth versus a closely‐related emerging pest the oriental fruit moth: a molecular analysis. Agric Forest Entomol 14: 260-269. https://doi.org/10.1111/j.1461-9563.2011.00564.x

Cavalloro R, Delrio G, 1975. Osservazioni sulla distribuzione e sopravvivenza delle pupe di Dacus oleae Gmelin nel terreno. Redia 56: 167-175.

Cornic JF, 1973. Etude du régime alimentaire de trois espèces de carabiques et de ses variations en verger de pommiers. Ann Soc Entomol Fr 9: 69-87.

Daane KM, Johnson MW, 2010. Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55: 151-169. https://doi.org/10.1146/annurev.ento.54.110807.090553

Dimou I, Koutsikopoulos C, Economopoulos AP, Lykakis J, 2003. Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. J Appl Entomol 127: 12-17. https://doi.org/10.1046/j.1439-0418.2003.00686.x

Dinis AM, Pereira JA, Pimenta MC, Oliveira J, Benhadi‐Marín J, Santos SAP, 2016. Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J Appl Entomol 140: 677-687. https://doi.org/10.1111/jen.12291

Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM, 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2º C global warming. Glob Planet Change 68: 209-224. https://doi.org/10.1016/j.gloplacha.2009.06.001

Gonçalves MF, Pereira JA, 2012. Abundance and diversity of soil arthropods in the olive grove ecosystem. J Insect Sci 12: 1-14. https://doi.org/10.1673/031.012.2001

González-Chang M, Wratten SD, Lefort MC, Boyer S, 2016. Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 9: 4-11. https://doi.org/10.1016/j.fooweb.2016.04.003

Greenstone MH, Rowley DL, Weber DC, Payton ME, Hawthorne DJ, 2007. Feeding mode and prey detectability half-lives in molecular gut-content analysis: an example with two predators of the Colorado potato beetle. Bull Entomol Res 97: 201-209. https://doi.org/10.1017/S000748530700497X

Gurdebeke S, Maelfait JP, 2002. Pitfall trapping in population genetics studies: finding the right "solution". J Arachnol 30: 255-261. https://doi.org/10.1636/0161-8202(2002)030[0255:PTIPGS]2.0.CO;2

Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC, 2005. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14: 819-827. https://doi.org/10.1111/j.1365-294X.2005.02442.x

Honek A, Martinkova Z, Jarosik V, 2013. Ground beetles (Carabidae) as seed predators. Eur J Entomol 100: 531-544. https://doi.org/10.14411/eje.2003.081

Juen A, Traugott M, 2006. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol Biochem 38: 1872-1879. https://doi.org/10.1016/j.soilbio.2005.11.034

King RA, Read DS, Traugott M, Symondson WOC, 2008. Molecular analysis of predation: a review of best practice for DNA‐based approaches. Mol Ecol 17: 947-963. https://doi.org/10.1111/j.1365-294X.2007.03613.x

King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WOC, 2010. Prey choice by carabid beetles feeding on an earthworm community analysed using species‐and lineage‐specific PCR primers. Mol Ecol 19: 1721-1732. https://doi.org/10.1111/j.1365-294X.2010.04602.x

Kromp B, 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74: 187-228. https://doi.org/10.1016/S0167-8809(99)00037-7

Lantero E, Matallanas B, Ochando MD, Pascual S, Callejas C, 2017. Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae). Span J Agric Res 15 (2): e1002. https://doi.org/10.5424/sjar/2017152-9920

Lasinio PJ, Zapparoli M, 1993. First data on the soil arthropod community in an olive grove in central Italy. In: Soil biota, nutrient cycling, and farming systems; Coleman DC, Foissner W, Paoletti MG (eds.). pp: 113-121. CRC Press, Boca Raton.

Lövei GL, Sárospataki M, 1990. Carabid beetles in agricultural fields in Eastern Europe. In: The role of ground beetles in ecological and environmental studies; Stork NE (ed.). pp: 87-93. Intercept, Andover.

Malheiro R, Casal S, Baptista P, Pereira JA, 2015. A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trends Food Sci Technol 44: 226-242. https://doi.org/10.1016/j.tifs.2015.04.009

Marchini D, Petacchi R, Marchi S, 2017. Bactrocera oleae reproductive biology: new evidence on wintering wild populations in olive groves of Tuscany (Italy). Bull Insectology 70: 121-128.

Matalin AV, 1997. Specific features of life cycle of Pseudoophonus (s. str.) rufipes Deg. (Coleoptera, Carabidae) in Southwest Moldova. Izv Akad Nauk Ser Biol 4: 371-381.

McDonald JH, 2009. Handbook of biological statistics. Sparky House Publ, Baltimore, MD, USA. 313 pp.

Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P, 2011. The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biol Control 56: 17-21. https://doi.org/10.1016/j.biocontrol.2010.09.004

Orsini MM, Daane KM, Sime KR, Nelson EH, 2007. Mortality of olive fruit fly pupae in California. Biocontrol Sci Technol 17: 797-807. https://doi.org/10.1080/09583150701527359

Pavlidi N, Kampouraki A, Tseliou V, Wybouw N, Dermauw W, Roditakis E, Nauen R, Van Leeuwen T, Vontas J, 2018. Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pestic Biochem Physiol 148: 1-7. https://doi.org/10.1016/j.pestbp.2018.03.011

Ponti L, Gutierrez AP, Ruti PM, Dell'Aquila A, 2014. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci 111: 5598-5603. https://doi.org/10.1073/pnas.1314437111

Ponti L, Gutierrez AP, Altieri MA, 2016. Preserving the mediterranean diet through holistic strategies for the conservation of traditional farming systems. In: Biocultural Diversity in Europe; Agnoletti M, Emanueli F (eds.). pp: 453-469. Springer Int Publ. https://doi.org/10.1007/978-3-319-26315-1_24

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

">https://www.r-project.org/

Rejili M, Fernandes T, Dinis AM, Pereira JA, Baptista P, Santos SAP, Lino-Neto T, 2016. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull Entomol Res 106: 1-5. https://doi.org/10.1017/S000748531600050X

Santos SAP, Cabanas JE, Pereira JA, 2007. Abundance and diversity of soil arthropods in olive grove ecosystem (Portugal): Effect of pitfall trap type. Eur J Soil Biol 43: 77-83. https://doi.org/10.1016/j.ejsobi.2006.10.001

Šerić Jelaska, Symondson WOC, 2016. Predation on epigeic, endogeic and anecic earthworms by carabids active in spring and autumn. Period Biol 118: 281-289. https://doi.org/10.18054/pb.2016.118.3.4709

Šerić Jelaska L, Franjevic D, Jelaska SD, Symondson WOC, 2014. Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. Eur J Entomol 111: 631.

Sheppard SK, Bell J, Sunderland KD, Fenlon J, Skervin D, Symondson WOC, 2005. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol Ecol 14: 4461-4468. https://doi.org/10.1111/j.1365-294X.2005.02742.x

Sunderland KD, 1975. The diet of some predatory arthropods in cereal crops. J Appl Ecol 12: 507-515. https://doi.org/10.2307/2402171

Sunderland KD, 2002. Invertebrate pest control by carabids. In: The agroecology of carabid beetles; Holland JM (ed.) pp: 165-214. Intercept, Andover.

Symondson WOC, 2002. Molecular identification of prey in predator diets. Mol Ecol 11: 627-641. https://doi.org/10.1046/j.1365-294X.2002.01471.x

Thiele HU, 1977. Carabid beetles in their environments. A study on habitat selection by adaptation in physiology and behaviour. Springer, Berlin. 369 pp.

Thomas CFG, Green F, Marshall EJP, 1997. Distribution, dispersal and population size of the ground beetles, Pterostichus melanarius (Illiger) and Harpalus rufipes (Degeer) (Coleoptera, Carabidae), in field margin habitats. Biol Agric Hortic 15: 337-352. https://doi.org/10.1080/01448765.1997.9755208

Vickerman GP, Sunderland KD, 1977. Some effects of dimethoate on arthropods in winter wheat. J Appl Ecol 14: 767-777. https://doi.org/10.2307/2402808

Waldner T, Sint D, Juen A, Traugott M, 2013. The effect of predator identity on post-feeding prey DNA detection success in soil-dwelling macro-invertebrates. Soil Biol Biochem 63: 116-123. https://doi.org/10.1016/j.soilbio.2013.03.030

Wallinger C, Sint D, Baier F, Schmid C, Mayer R, Traugott M, 2015. Detection of seed DNA in regurgitates of granivorous carabid beetles. Bull Entomol Res 105: 728-735. https://doi.org/10.1017/S000748531500067X

Weber DC, Lundgren JG, 2009. Detection of predation using qPCR: effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J Insect Sci 9: 1-12. https://doi.org/10.1673/031.009.4101

Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC, 1999. Can multiple‐copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8: 2081-2087. https://doi.org/10.1046/j.1365-294x.1999.00823.x




DOI: 10.5424/sjar/2018163-12860