A biotic strategy to sequester carbon in the ornamental containerized bedding plant production: A review

Jose M. Alvarez, Claudio Pasian, Rattan Lal, Rafael Lopez-Nuñez, Manuel Fernández


Identifying options of climate change mitigation is of global interest to researchers. Whereas wide range of techniques of reducing greenhouse gas (GHG) emissions and carbon sequestration have been studied in row crops and forest systems, little research has been done on the ornamental horticulture. The ornamental industrial sector has indeed some negative impacts on the global environment, but also presents opportunities to reduce GHG emissions and increase C sequestration. Thus the objective of this study was to synthesize the potential contributions of some substrates used in the horticultural sector to carbon sequestration. The specific focus of the review is on the possible use of compost, vermicompost and biochar as soilless substrate substitutes for containerized ornamental plants production. Around 11 million kilograms of sphagnum peat moss are used annually in the world for horticultural production. Therefore, the potential of using compost, vermicompost and biochar as growing media is assessed on the basis of data from greenhouse studies. Peat-based substrate can be substituted up to 30% to 35% by compost or vermicompost and up to 20% to 25% by biochar. Some examples from field studies are included to conduct the life cycle assessment of using these growth media. An estimate of C storage on the long-term basis in soil indicates up to 3 million tons of CO2 equivalent as the maximum C potential storage per year in the global productive sector if the peat-based growing media are substituted by compost/vermicompost and biochar at the ratios mentioned above. Finally, synergies between compost vermicompost and biochar are discussed when these materials are combined as growing media additives and research gaps in this area of activity have been identified for further research.


biochar; compost; substrate additive; peat replacement; carbon storage; ornamental containerized plants

Full Text:



Abad M, Noguera P, Burés S, 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour Technol 77: 197-200. https://doi.org/10.1016/S0960-8524(00)00152-8

Abad M, Noguera P, Puchades R, Maquieira A, Noguera V, 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol 82: 241-245. https://doi.org/10.1016/S0960-8524(01)00189-4

AIPH, 2017. The International Statistics Flowers and Plants Yearbook. Institut fur Gartenbauoekonomie, Universitat Hannover.

Akhtar SS, Li G, Andersen MN, Liu F, 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138: 37-44. https://doi.org/10.1016/j.agwat.2014.02.016

Al-Mughrabi K, Bertheleme C, Livingston T, Burgoyne A, Poirier R, Vikram A, 2008. Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci 3: 168-175. https://doi.org/10.3923/jps.2008.168.175

Alburquerque JA, Salazar P, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R, 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33: 475-484. https://doi.org/10.1007/s13593-012-0128-3

Alexander P, Bragg N, Meade R, Padelopoulos G, Watts O, 2008. Peat in horticulture and conservation: the UK response to a changing world. Mires and Peat 3: Art 08.

Altieri MA, Nicholls CI, 2012. Agroecology scaling up for food sovereignty and resiliency. In: Sustainable Agriculture Reviews. Springer Netherlands, pp: 1-29. https://doi.org/10.1007/978-94-007-5449-2_1

Altland JE, Krause CR, 2012. Substituting pine wood for pine bark affects physical properties of nursery substrates. HortScience 47: 1499-1503.

Altland JE, Locke JC, 2012. Biochar affects macronutrient leaching from a soilless substrate. HortScience 47: 1136-1140.

Álvarez J, Del Campo A, Sancho F, 2001. Research and technological development of composting processes and its application in the agriculture and forestry sectors. Int Conf Orbit 2001 on Biological Processing of Wastes. Spanish Wastes Club & ORBIT Association, Seville Spain.

Alvarez JM, Pasian C, Lal R, Lopez R, Fernandez M, 2017. Vermicompost and biochar as growing media replacement for ornamental plant production. J Appl Hortic 19: 205-214.

Alvarez JM, Pasian, C, Lal R, López R, Díaz MJ, Fernández M, 2018. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For Urban Green 34: 175-180. https://doi.org/10.1016/j.ufug.2018.06.021

Ansorena J, Batalla E, Merino D, 2014. Evaluación de la calidad y usos del compost como componente de sustratos, enmiendas y abonos orgánicos. Escuela Agraria Fraisoro 1-67. https://www.blueberrieschile.cl/subidas/2015/07/pdf_000304.pdf

Antonius S, Dewi TK, Osaki M, 2015. The synergy of biochar during composting for supporting sustainable agriculture. KnE Life Sci 2: 677. https://doi.org/10.18502/kls.v2i1.247

Arancon NQ, Edwards C A, Bierman P, Metzger JD, Lucht C, 2005. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia (Jena). 49: 297-306. https://doi.org/10.1016/j.pedobi.2005.02.001

Atiyeh RM, Arancon N, Edwards CA Metzger JD, 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Science 75: 175-180.

Bachman GR, Metzger JD, 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour Technol 99: 3155-3161. https://doi.org/10.1016/j.biortech.2007.05.069

Barthod J, Rumpel C, Paradelo R, Dignac M-F, 2016. The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts. Soil 2: 673-683. https://doi.org/10.5194/soil-2-673-2016

Bedussi F, Zaccheo P, Crippa L, 2015. Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biol Fertil Soils 51: 625-635. https://doi.org/10.1007/s00374-015-1011-6

Belda RM, Mendoza-Hernández D, Fornes F, 2013. Nutrient-rich compost versus nutrient-poor vermicompost as growth media for ornamental-plant production. J Plant Nutr Soil Sci 176: 827-835. https://doi.org/10.1002/jpln.201200325

Benito M, Masaguer A, Moliner A, De Antonio R, 2006. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour Technol 97: 2071-6. https://doi.org/10.1016/j.biortech.2005.09.011

Biederman LA, Harpole WS, 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5: 202-214. https://doi.org/10.1111/gcbb.12037

Bilderback TE, Riley ED, Jackson BE, Owen JS, Kraus HTJ, Fonteno WC, Altland J, Fain GB, 2013. Strategies for developing sustainable substrates in nursery crop production. Acta Hortic 1013: 43-56. https://doi.org/10.17660/ActaHortic.2013.1013.2

Bingeman CW, Varner JE, Martin W, 1953. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am J 17 (1): 34-38. https://doi.org/10.2136/sssaj1953.03615995001700010008x

Bragazza L, Buttler A, Robroek BJM, Albrecht R, Zaccone C, Jassey VEJ, Signarbieux C, 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob Chang Biol 22: 4114-4123. https://doi.org/10.1111/gcb.13319

Brito LM, Reis M, Mourão I, Coutinho J, 2015. Use of acacia waste compost as an alternative component for horticultural substrates. Commun Soil Sci Plant Anal 3624: 1814-1826. https://doi.org/10.1080/00103624.2015.1059843

Buss W, Graham MC, Shepherd JG, Mašek O, 2016. Risks and benefits of marginal biomass-derived biochars for plant growth. Sci Total Environ 569-570: 496-506. https://doi.org/10.1016/j.scitotenv.2016.06.129

Cao CTN, Farrell C, Kristiansen PE, Rayner JP, 2014. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol Eng 71: 368-374. https://doi.org/10.1016/j.ecoleng.2014.06.017

Carlile WR, 2008. The use of composted materials in growing media. Acta Hortic 779: 321-328. https://doi.org/10.17660/ActaHortic.2008.779.39

Carlile WR, Cattivello C, Zaccheo P, 2015. Organic growing media: Constituents and properties. Vadose Zone J 14 (6): 1-8. https://doi.org/10.2136/vzj2014.09.0125

Carmona E, Ordovás J, Moreno MT, Avilés M, Aguado MT, Ortega MC, 2003. Granulometric characterization and alteration during composting of industrial cork residue for use as a growing medium. HortScience 38: 1242-1246.

Caron J, Rochefort L, 2013. Use of peat in growing media: State of the art on industrial and scientific efforts envisioning sustainability. Acta Hortic 982: 15-22. https://doi.org/10.17660/ActaHortic.2013.982.1

Carrión C, Abad M, Fornes F, Noguera V, Maquieira Á, Puchades R, 2005. Leaching of composts from agricultural wastes to prepare nursery potting media. Acta Hortic 697: 117-124. https://doi.org/10.17660/ActaHortic.2005.697.13

Carrión C, Puchades R, Fornes F, Belda RM, Noguera V, Abad M, 2007. Producción de planta ornamental en sustratos preparados con compost de residuos de cultivos hortícolas. Actas Hortic 47: 157-162.

Carrión C, de la Fuente RG, Fornes F, Abad M, Puchades R, 2008. Acidifying composts from vegetable crop wastes to prepare growing media for containerized crops. Compost Sci Util 16: 20-29. https://doi.org/10.1080/1065657X.2008.10702351

Carter S, Shackley S, Sohi S, Suy T, Haefele S, 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3: 404-418. https://doi.org/10.3390/agronomy3020404

Ceglie FG, Bustamante MA, Ben Amara M, Tittarelli F, 2015. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS One 10: e0128600. https://doi.org/10.1371/journal.pone.0128600

Chong C, 2005. Experiences with wastes and composts in nursery substrates. HortTechnology 15: 739-747.

Dalenberg JW, Jager G, 1989. Priming effect of some organic additions to 14C-labelled soil. Soil Biol Biochem 21: 443-448. https://doi.org/10.1016/0038-0717(89)90157-0

De Lucia B, Cristiano G, Vecchietti L, Rea E, Russo G, 2013. Nursery growing media: Agronomic and environmental quality assessment of sewage sludge-based compost. Appl Environ Soil Sci 2013: 1-10. https://doi.org/10.1155/2013/565139

De Tender CA, Debode J, Vandecasteele B, D'Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M, 2016. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl Soil Ecol 107: 1-12. https://doi.org/10.1016/j.apsoil.2016.05.001

Derrien D, Barot S, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Nunan N, Roumet C, 2016. Stocker du C dans les sols. Quels mécanismes, quelles pratiques agricoles, quels indicateurs? Étude et Gestion des Sols 23: 193-224.

Dias BO, Silva CA, Higashikawa FS, Roig A, Sánchez-Monedero MA, 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour Technol 101: 1239-1246. https://doi.org/10.1016/j.biortech.2009.09.024

Dispenza V, Pasquale C De, Fascella G, Mammano MM, Alonzo G, 2016. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Span J Agric Res 14 (4): e0908. https://doi.org/10.5424/sjar/2016144-9082

Do TC V, Scherer HW, 2013. Compost as growing media component for salt-sensitive plants. Plant Soil Environ 59: 214-220. https://doi.org/10.17221/804/2012-PSE

Dumroese RK, Heiskanen J, Englund K, Tervahauta A, 2011. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass & Bioenerg 35: 2018-2027. https://doi.org/10.1016/j.biombioe.2011.01.053

Dumroese RK, Landis TD, 2016. The native plant propagation protocol database: 16 years of sharing information. Nativ Plants J 17: 267-272. https://doi.org/10.3368/npj.17.3.267

EC, 2015. Closing the loop. An EU action plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.

Edwards CA, Burrows I, 1988. The potential of earthworm composts as plant growth media. In: Earthworms in waste and environmental management: Edwards CA & Neuhauser E (eds). pp: 21-32. SPB Acad Press, The Hague, The Netherlands.

Elad Y, David D.R., Harel YM, Borenshtein M, Kalifa H, Ben Silber A, Graber ER, 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100: 913-921. https://doi.org/10.1094/PHYTO-100-9-0913

Elmer WH, Pignatello JJ, 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95: 960-966. https://doi.org/10.1094/PDIS-10-10-0741

Fascella G, 2015. Growing substrates alternative to peat for ornamental plants. In: Soilless culture - Use of substrates for the production of quality horticultural crops. InTech Publication, Asaduzzaman (ed). pp: 47-67. Rijeka, Croatia.

Fernández-Hernández A, García-Ortiz Civantos C, Roig A, Sánchez-Monedero MA, 2013. Compost prepared with two phase olive mill waste "alperujo" as growing media. Acta Hortic 1013: 217-224. https://doi.org/10.17660/ActaHortic.2013.1013.25

Fischer D, Glaser B, 2012. Synergisms between compost and biochar for sustainable soil amelioration. In: Management of organic waste; Sunil K & Ajay B (eds.). InTech. pp: 167-198. Rijeka. https://doi.org/10.5772/31200

Fornes F, Mendoza-Hernández D, García-de-la-Fuente R, Abad M, Belda RM, 2012. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour Technol 118: 296-305. https://doi.org/10.1016/j.biortech.2012.05.028

Fornes F, Janackova A, SáncheP-Perales M, Belda R, 2013. Materia orgánica carbonizada como componente de sustrato para el cultivo en contenedor. VII Congr Iber Agroing Cienc Hortic C0167.

Garcia-Gomez A, Bernal MP, Roig A, 2002. Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresour Technol 83: 81-87. https://doi.org/10.1016/S0960-8524(01)00211-5

Gavilanes-Terán I, Jara-Samaniego J, Idrovo-Novillo J, Bustamante MA, Pérez-Murcia MD, Pérez-Espinosa A, López M, Paredes C, 2016. Agroindustrial compost as a peat alternative in the horticultural industry of Ecuador. J Environ Manage 186: 79-87. https://doi.org/10.1016/j.jenvman.2016.10.045

Gelsomino A, Abenavoli MR, Princi G, Attinà E, Cacco G, Sorgonà A, 2010. Compost from fresh orange waste: A suitable substrate for nursery and field crops? Compost Sci Util 18: 201-210. https://doi.org/10.1080/1065657X.2010.10736956

González-Fernández JJ, Galea Z, Álvarez JM, Hormaza JI, López R, 2015. Evaluation of composition and performance of composts derived from guacamole production residues. J Environ Manage 147: 132-139. https://doi.org/10.1016/j.jenvman.2014.09.016

Goulden ML, Munger J, Fan S, Daube BC, Wofsy SC, 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2: 169-182. https://doi.org/10.1111/j.1365-2486.1996.tb00070.x

Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, Rav David D, Tsechansky L, Borenshtein M, Elad Y, 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337: 481-496. https://doi.org/10.1007/s11104-010-0544-6

Gravel V, Dorais M, Ménard C, 2013. Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Can J Plant Sci 93: 1217-1227. https://doi.org/10.4141/cjps2013-315

Gruda N, 2011. Current and future perspective of growing media in Europe. V Balkan Symp on Vegetables and Potatoes. Acta Hort 960: 37-44. https://doi.org/10.17660/ActaHortic.2012.960.3

Gu M, Li Q, Steele PH, Niu G, Yu F, 2013. Growth of "Fireworks" gomphrena grown in substrates amended with biochar. J Food Agric Environ 11: 819-821.

Harenda KM, Lamentowicz M, Samson M, Chojnicki BH, 2018. The role of peatlands and their carbon storage function in the context of climate change. In: Interdisciplinary approaches for sustainable development goals. GeoPlanet: Earth and Planetary Sciences; Zielinski T, Sagan I, Surosz W (eds.). pp: 169-187. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_12

Hidalgo Loggiodice PR, Sindoni Vielma M, Marín C, 2009. Evaluacion de sustratos a base de vermicompost y enmiendas organicas liquidas en la propagacion de parchita (Passiflora edulis v.flavicarpa) en vivero. Rev Cien UDO Agric 9: 126-135.

Hugron S, Bussières J, Rochefort L, 2013. Tree plantations within the context of ecological restoration of peatlands: a practical guide. Peatland Ecology Research Group, Université Laval, Québec. 88 pp.

IPCC, 2014. Summary for policymakers, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.

Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA, 2012. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110: 396-404. https://doi.org/10.1016/j.biortech.2012.01.120

Jindo K, Sonoki T, Matsumoto K, Canellas L, Roig A, Sanchez-Monedero MA, 2016. Influence of biochar addition on the humic substances of composting manures. Waste Manag 49: 545-552. https://doi.org/10.1016/j.wasman.2016.01.007

Kaudal BB, Chen D, Madhavan DB, Downie A, Weatherley A, 2015. Pyrolysis of urban waste streams: Their potential use as horticultural media. J Anal Appl Pyrolysis 112: 105-112. https://doi.org/10.1016/j.jaap.2015.02.011

Kaudal BB, Chen D, Madhavan DB, Downie A, Weatherley A, 2016. An examination of physical and chemical properties of urban biochar for use as growing media substrate. Biomass Bioenerg 84: 49-58. https://doi.org/10.1016/j.biombioe.2015.11.012

Keith A, Singh B, Dijkstra FA, 2015. Biochar reduces the rhizosphere priming effect on soil organic carbon. Soil Biol Biochem 88: 372-379. https://doi.org/10.1016/j.soilbio.2015.06.007

Kim HS, Kim KR, Yang JE, Ok YS, Kim WI, Kunhikrishnan A, Kim KH, 2016. Amelioration of horticultural growing media properties through rice hull. Biochar Incorporation. Waste Biomass Valor 8 (2): 483-492. https://doi.org/10.1007/s12649-016-9588-z

Koeser AK, Lovell ST, Petri AC, Brumfield RG, Stewart JR, 2014. Biocontainer use in Petunia × hybrida greenhouse production - A cradle-to-gate carbon footprint assessment of secondary impacts. HortScience 49: 265-271.

Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E, 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77: 4924-4930. https://doi.org/10.1128/AEM.00148-11

Laird DA, 2008. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100: 178. https://doi.org/10.2134/agronj2007.0161

Lal R, 2004a. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627. https://doi.org/10.1126/science.1097396

Lal R, 2004b. Soil carbon sequestration to mitigate climate change. Geoderma 123 (1-2): 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032

Lal R, 2008. Carbon sequestration. Philos Trans R Soc Lond B Biol Sci 363: 815-30. https://doi.org/10.1098/rstb.2007.2185

Lal R, 2009. Sequestering carbon in soils of arid ecosystems. L Degrad Dev 20: 441-454. https://doi.org/10.1002/ldr.934

Lal R, 2013. Food security in a changing climate. Ecohydrol Hydrobiol 13: 8-21. https://doi.org/10.1016/j.ecohyd.2013.03.006

Lal R, 2015. Biochar and soil carbon sequestration. Agr Environ Appl Biochar Adv Barriers 63: 1-24.

Lal R, 2016. Beyond COP 21: Potential and challenges of the "4 per Thousand" initiative. J Soil Water Conserv 71: 20A-25A. https://doi.org/10.2489/jswc.71.1.20A

Lazcano C, Arnold J, Tato A, Zaller JGG, Domínguez J, 2009. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Statistica 7: 944-951. https://doi.org/10.5424/sjar/2009074-1107

Lehmann BJ, 2007. Biochar for mitigating climate change: carbon sequestration in the black. Forum Geookologie 18: 15-17.

Lehmann J, 2009. Biological carbon sequestration must and can be a win-win approach. Clim Change 97: 459-463. https://doi.org/10.1007/s10584-009-9695-y

Lima SL, Marimon Jr BH, Melo-Santos K, Reis SM, Petter FA, Vilar CC, Marimon BS, 2016. Biochar no manejo de nitrogênio e fósforo para a produção de mudas de angico. Pesqui Agropec Bras 51: 120-131. https://doi.org/10.1590/S0100-204X2016000200004

López R, Sancho F, Álvarez JM, Madejón E, 2003. Sustratos de cultivo con composts urbanos para el cultivo de lentisco (Pistacia lentiscus). Actas Hortic 39: 590-591.

López R, Alvarez JM, Madejón E, Cabrera F, 2005. Red de ensayos demostrativos del proyecto Life-compost. II Congreso Sobre Bioresiduos y Compost. ISCER, Sevilla. (Spain), pp: 1-10.

López R, Cabrera F, Madejón E, Sancho F, Álvarez JM, 2008. Urban composts as an alternative for peat in forestry nursery growing media. Dyn Soil Dyn Plant 1 (S): 60-66.

Lorenz K, Lal R, 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177: 651-670. https://doi.org/10.1002/jpln.201400058

Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, Xie Z, 2014. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol Biochem 76: 12-21. https://doi.org/10.1016/j.soilbio.2014.04.029

Majsztrik JC, Ristvey AG, Lea-Cox JD, 2011. Water and nutrient management in the production of container-grown ornamentals, In: Horticultural Reviews. John Wiley & Sons, Inc. (eds), Hoboken, NJ, USA, pp: 253-297.

Malińska K, Zabochnicka-Światek M, Cáceres R, Marfà O, 2016. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol Eng 90: 35-41. https://doi.org/10.1016/j.ecoleng.2016.01.042

Marble SC, Prior SA, Brett Runion G, Allen Torbert H, Gilliam CH, Fain GB, 2011. The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture. HortScience 46: 240-244.

Marble SC, Prior SA, Runion GB, Torbert HA, Gilliam CH, Fain GB, Sibley JL, Knight PR, 2012. Determining trace gas efflux from container production of woody nursery crops. J Environ Hortic 30: 118-124.

Martínez-Blanco J, Lazcano C, Christensen TH, Muñoz P, Rieradevall J, Møller J, Antón A, Boldrin A, 2013. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron Sustain Dev 33: 721-732. https://doi.org/10.1007/s13593-013-0148-7

Masaguer A, López-Cuadrado MC, 2006. Sustratos para viveros. Viveros/Extra 8, Work document. pp: 44-50.

Méndez A, Cárdenas-Aguiar E, Paz-Ferreiro J, Plaza C, Gascó G, 2016. The effect of sewage sludge biochar on peat-based growing media. Biol Agric Hortic 33 (1): 1-12.

Mendoza-Hernández D, Fornes F, Belda RM, 2014. Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci Hortic 178: 192-202. https://doi.org/10.1016/j.scienta.2014.08.024

Michel J, 2010. The physical properties of peat: a key factor for modern growing media. Mires Peat 6: 2-7.

Miranda ME, Fernandez J, 1992. Micropropagation as a nursery technique for chestnut hybrid clones. Proc Int Chestnut Conf, West Virginia Univ Press, Morgantown, VA, USA, pp: 101-103.

Montanarella L, Lugato E, 2013. The application of biochar in the EU: Challenges and opportunities. Agronomy 3: 462-473. https://doi.org/10.3390/agronomy3020462

Morales-Corts MRM, Gómez-Sánchez MÁ, Pérez-Sánchez R, 2014. Evaluation of green/pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultural production. Sci Hortic 172: 155-160. https://doi.org/10.1016/j.scienta.2014.03.048

Mukherjee A, Lal R, 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3: 313-339. https://doi.org/10.3390/agronomy3020313

Mulcahy DN, Mulcahy DL, Dietz D, 2013. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J Arid Environ 88: 222-225. https://doi.org/10.1016/j.jaridenv.2012.07.012

Nemati MR, Simard F, Fortin JP, Beaudoin J, 2015. Potential use of biochar in growing media. Vadose Zo J 14 (6): vzj2014.06.0074.

Ngo PT, Rumpel C, Ngo QA, Alexis M, Vargas GV, Mora Gil M de la L, Dang DK, Jouquet P, 2013. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresour Technol 148: 401-407. https://doi.org/10.1016/j.biortech.2013.08.098

Nicese FP, Lazzerini G, 2013. CO2 sources and sink in ornamental plant nurseries. Acta Hortic 990: 91-98. https://doi.org/10.17660/ActaHortic.2013.990.8

Nieto A, Gascó G, Paz-Ferreiro J, Fernández JM, Plaza C, Méndez A, 2016. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci Hortic 199: 142-148. https://doi.org/10.1016/j.scienta.2015.12.012

Northup JI, 2013. Biochar as a replacement for perlite in greenhouse soilless substrates. Grad. Theses Diss. Iowa State Ames, IA, USA. 64 pp.

Olmo M, Villar R, Salazar P, Alburquerque JA, 2016. Changes in soil nutrient availability explain biochar's impact on wheat root development. Plant Soil 399: 333-343. https://doi.org/10.1007/s11104-015-2700-5

Ostos JC, López-Garrido R, Murillo JM, López R, 2008. Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresour Technol 99: 1793-800. https://doi.org/10.1016/j.biortech.2007.03.033

Pardo G, del Prado A, Martínez-Mena M, Bustamante MA, Martín JAR, Álvaro-Fuentes J, Moral R, 2017. Orchard and horticulture systems in Spanish Mediterranean coastal areas: Is there a real possibility to contribute to C sequestration? Agric Ecosyst Environ 238: 153-167. https://doi.org/10.1016/j.agee.2016.09.034

Perez-Murcia MD, Moral R, Moreno-Caselles J, Perez-Espinosa A, Paredes C, 2006. Use of composted sewage sludge in growth media for broccoli. Bioresour Technol 97: 123-130. https://doi.org/10.1016/j.biortech.2005.02.005

Perry A, 2011. Carefully unraveling the intricacies of biochar. Agric Res 59 (10): 4-8.

Peterson SC, Jackson MA, 2014. Simplifying pyrolysis: Using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind Crops Prod 53: 228-235. https://doi.org/10.1016/j.indcrop.2013.12.028

Prasad M, Maher MJ, 2001. The use of composted green waste (CGW) as a growing medium component. Acta Hortic 549: 107-114. https://doi.org/10.17660/ActaHortic.2001.549.11

Prior SA, Runion GB, Marble SC, Rogers HH, Gilliam CH, Torbert HA, 2011. A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46: 158-162.

Raviv M, Lieth JH, 2008. Soilless culture: Theory and practice.The fertilization of potted crops. Elsevier, San Diego, USA. 625 pp.

Raviv M, 2013. Can the use of composts and other organic amendments in horticulture help to mitigate climate change? Acta Hortic 1076: 19-28. https://doi.org/10.17660/ActaHortic.2015.1076.1

Raviv M, 2014 Composts in growing media: Feedstocks, composting methods and potential applications. Acta Hortic 1018: 513-524. https://doi.org/10.17660/ActaHortic.2014.1018.56

Raviv M, Chen Y, Inbar Y, 1986. Peat and peat substitutes as growth media for container-grown plants. In: The role of organic matter in modern agriculture. Developments in Plant and Soil Sciences; Chen Y, Avnimelech Y (eds.), pp: 257-287. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4426-8_11

Rodríguez-Vila A, Covelo EF, Forján R, Asensio V, 2014. Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar. Environ Sci Pollut Res 21: 11293-11304. https://doi.org/10.1007/s11356-014-2993-6

RSFGV, 1999. CO2 in greenhouse horticulture. Applied Plant Research, Research Station for Floristry and Greenhouse Vegetables. Aalsmeer/Naaldwijk, Netherlands, 118 pp.

Russo G, Buttol P, Tarantini M, 2008. LCA (Life Cycle Assessment) of roses and cyclamens in greenhouse cultivation. Acta Hort 801 (1): 359-366. https://doi.org/10.17660/ActaHortic.2008.801.37

Russo G, Verdiani G, Anifantis AS, 2016. Re-use of agricultural biomass for nurseries using proximity composting. Contemp Eng Sci 9: 1151-1182. https://doi.org/10.12988/ces.2016.68135

Sánchez-Monedero MA, Roig A, Cegarra J, Bemal MP, Noguera P, Abad M, Antón A, 2004. Composts as media constituents for vegetable transplant production. Compost Sci Util 12: 161-168. https://doi.org/10.1080/1065657X.2004.10702175

Sardoei A, 2014. Vermicompost effects on the growth and flowering of marigold (Calendula officinalis). Eur J Exp Biol 4: 651-655.

Schmidt HP, Kammann C, Niggli C, Evangelou MWH, Mackie K A, Abiven S, 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric Ecosyst Environ 191: 117-123. https://doi.org/10.1016/j.agee.2014.04.001

Schmilewski G, 2009. Growing medium constituents used in the EU. Acta Hortic 819: 33-46. https://doi.org/10.17660/ActaHortic.2009.819.3

Schmilewski G, 2017. Growing media constituents used in the EU in 2013. Acta Hortic 1168: 85-92. https://doi.org/10.17660/ActaHortic.2017.1168.12

Schrag DP, 2007. Preparing to capture carbon. Science 315 (5813): 812-813. https://doi.org/10.1126/science.1137632

Schulz H, Glaser B, 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175: 410-422. https://doi.org/10.1002/jpln.201100143

Schulz H, Dunst G, Glaser B, 2013. Positive effects of composted biochar on plant growth and soil fertility. Agron Sustain Dev 33: 817-827. https://doi.org/10.1007/s13593-013-0150-0

Sharkawi HM El, Ahmed MA, Hassanein MK, 2014. Development of treated rice husk as an alternative substrate medium in cucumber soilless culture. J Agric Environ Sci 3: 131-149. https://doi.org/10.15640/jaes.v3n4a10

Sohi S, Gaunt JL, Atwood J, 2013. Biochar in growing media: A sustainability and feasibility assessment. Work document Sustainable Growing Media Task Force. Biochar Research Center, Edinburgh, UK. Defra project ref. SP1213.

Sombroek WG, 1966. Amazon Soils. A reconnaissance of the soils of the Brazilian Amazon region. Doctoral thesis. Agric Univ Wageningen, Netherlands.

Soode E, Lampert P, Weber-Blaschke G, Richter K, 2015. Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. J Clean Prod 87: 168-179. https://doi.org/10.1016/j.jclepro.2014.09.035

Souchie FF, Marimon Junior BH, Petter FA, Madari BE, Marimon BS, Lenza, E, 2011. Carvão pirogênico como condicionante para substrato de mudas de Tachigali vulgaris L.G. Silva & H.C. Lima. Cienc Florest 21 (4): 811-821. https://doi.org/10.5902/198050984526

Srinivasarao C, Gopinath KA, Venkatesh G, Dubey AK, Wakudkar H, Purakayastha TJ, Pathak H, Jha P, Lakaria BL, Rajkhowa DJ, et al., 2013. Use of biochar for soil health enhancement and greenhouse gas mitigation in India: Potential and constraints. NICRA Bull. 1/2013, 62 pp.

Steiner C, Harttung T, 2014. Biochar as a growing media additive and peat substitute. Solid Earth 5: 995-999. https://doi.org/10.5194/se-5-995-2014

Sultana S, Kashem MA, Mollah AKMM, 2015. Comparative assessment of cow manure vermicompost and NPK fertilizers and on the growth and production of Zinnia (Zinnia elegans) flower. Open J Soil Sci 05: 193-198. https://doi.org/10.4236/ojss.2015.59019

Thomazini, A, Spokas K, Hall K, Ippolito J, Lentz R, Novak J, 2015. GHG impacts of biochar: Predictability for the same biochar. Agr Ecosyst Environ 207: 183-191. https://doi.org/10.1016/j.agee.2015.04.012

Tian Y, Sun X, Li S, Wang H, Wang L, Cao J, Zhang L, 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci Hortic 143: 15-18. https://doi.org/10.1016/j.scienta.2012.05.018

Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilés M, 2006. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39: 32-38. https://doi.org/10.1016/j.biocontrol.2006.05.007

Tringovska I, Dintcheva T, 2012. Vermicompost as substrate amendment for tomato transplant production. Sustain Agric Res 1: 115-122. https://doi.org/10.5539/sar.v1n2p115

Tyler HH, Warren SL, Bilderback TE, Fonteno WC, 1993. Composted turkey litter: I. Effect on chemical and physical properties of a pine bark substrate. J Environ Hortic 11: 131-131.

USDA-NASS, 2016. Floriculture Crops 2015 Summary. http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-26-2016.pdf

Vaughn SF, Kenar JA, Thompson AR, Peterson SC, 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crops Prod 51: 437-443. https://doi.org/10.1016/j.indcrop.2013.10.010

Vaughn SF, Dan Dinelli F, Tisserat B, Joshee N, Vaughan MM, Peterson SC, 2015a. Creeping bentgrass growth in sand-based root zones with or without biochar. Sci Hortic 197: 592-596. https://doi.org/10.1016/j.scienta.2015.10.021

Vaughn SF, Eller FJ, Evangelista RL, Moser BR, Lee E, Wagner RE, Peterson SC, 2015b. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Ind Crops Prod 65: 467-471. https://doi.org/10.1016/j.indcrop.2014.10.040

Vaughn SF, Kenar JA, Eller FJ, Moser BR, Jackson MA, Peterson SC, 2015c. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind Crops Prod 66: 44-51. https://doi.org/10.1016/j.indcrop.2014.12.026

Vecchietti L, De Lucia B, Russo G, Rea E, Leone A, 2013. Environmental and agronomic evaluation of containerized substrates developed from sewage sludge compost for ornamental plant production. Acta Hortic 1013: 431-439. https://doi.org/10.17660/ActaHortic.2013.1013.54

Waddington JM, Warner KD, Kennedy GW, 2002. Cutover peatlands: A persistent source of atmospheric CO2. Global Biogeochem. Cycles 16: 1-7. https://doi.org/10.1029/2001GB001398

Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S, 2010. Climate change. Nat Commun 1: 1-9. https://doi.org/10.1038/ncomms1053

Zaccheo P, Crippa L, Cattivello C, 2014. Liming power of different particle fractions of biochar. Acta Horticulturae 1034: 363-368. https://doi.org/10.17660/ActaHortic.2014.1034.45

Zaller JG, 2007. Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hortic 112: 191-199. https://doi.org/10.1016/j.scienta.2006.12.023

Zwart DC Kim SH, 2012. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. HortScience 47: 1736-1740.

DOI: 10.5424/sjar/2018163-12871