Short communication: Identification and relationship of the autochthonous ‘Romé’ and ‘Rome Tinto’ grapevine cultivars

  • Ana Jiménez-Cantizano University of Cadiz, Faculty of Sciences, Dept. Chemical Engineering and Food Technology, Vegetal Production Area, Agrifood Campus of International Excellence (CeiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz
  • Antonio Amores-Arrocha University of Cadiz, Faculty of Sciences, Dept. Chemical Engineering and Food Technology, Vegetal Production Area, Agrifood Campus of International Excellence (CeiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz
  • Rocío Gutiérrez-Escobar IFAPA, Centro Rancho de la Merced. Ctra. Cañada de la Loba (CA-3102) PK 3.1, 11471 Jerez de la Frontera, Cadiz
  • Víctor Palacios University of Cadiz, Faculty of Sciences, Dept. Chemical Engineering and Food Technology, Vegetal Production Area, Agrifood Campus of International Excellence (CeiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz
Keywords: Vitis vinifera, SSR, ampelography, synonym

Abstract

The ‘Romé’ variety is considered an Andalusian (southern region in Spain) autochthonous black grape cultivar. However, several white and black grapevine accessions are known by this name, according to Vitis International Variety Catalogue. The aim of the present work was to clarify the identity of the ‘Romé’ and ‘Rome Tinto’ as black grapevine cultivar. Eight accessions known as ‘Romé’ and two as ‘Rome Tinto’ were analyzed using 30 OIV descriptors and 22 SSR loci. The morphologic and genetic analysis showed that all accessions studied presented the same genotype and phenotype and grouped with South Spanish cultivars. This study helps to clarify the confusion over the identity of ‘Romé’ grapevine cultivar, and provides a solid basis to develop a germplasm collection to protect grapevine diversity and to recover cultivars that may be in danger of extinction.

Downloads

Download data is not yet available.

Author Biography

Antonio Amores-Arrocha, University of Cadiz, Faculty of Sciences, Dept. Chemical Engineering and Food Technology, Vegetal Production Area, Agrifood Campus of International Excellence (CeiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz

References

Abela EJ, de Andino S, 1885. El libro del viticultor. Impresor de la Real Casa, Madrid, Spain.

Aliquó G, Torres R, Lacombe T, Boursiquot JM, Laucou V, Gualpa J, Fanzone M, Sari S, Pérez-Peña J, Prieto JA, 2017. Identity and parentage of some South American grapevine cultivars present in Argentina. Aust J Grape Wine Res 23: 452-460. https://doi.org/10.1111/ajgw.12282

Bowers JE, Dangl GS, Vignani R, Meredith CP, 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39: 628-633. https://doi.org/10.1139/g96-080

Bowers JE, Dangl GS, Meredith CP, 1999. Development and characterization of additional microsatellite markers for grape. Am J Enol Viticult 50: 243-246.

Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R, 2010. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121: 1569-1585. https://doi.org/10.1007/s00122-010-1411-9

Clemente Rubio S de R, 1807. Ensayo sobre las variedades de vid que vegetan en Andalucía. Imp. Villalpando, Madrid.

De Andrés MT, Benito A, Pérez-Rivera G, Ocete R, López MA, Gaforio L, Muñoz G, Cabello F, Martínez-Zapater JM, Arroyo-García R, 2012. Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21 (4): 800-816. https://doi.org/10.1111/j.1365-294X.2011.05395.x

De Mattia F, Imazio S, Grassi F, Lovicu G, Tardaguila J, Failla O, Maitt CH, Scienza A, Labra M, 2007. Genetic characterization of Sardinia grapevine cultivars by SSR markers analysis. J Int Sci Vigne Vin 41 (4): 175-184. https://doi.org/10.20870/oeno-one.2007.41.4.837

Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G, 2000. Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101: 301-308. https://doi.org/10.1007/s001220051483

Dzhambazova T, Tsvetkov I, Atanassov I, Rusanos K, Martínez Zapater JM, Atanassov A, Hvarleva T, 2009. Genetic diversity in native Bulgarian grapevine germplasm (Vitis vinifera L.) based on nuclear and chloroplast microsatellite polymorphisms. Vitis 48: 115-121.

El Oualkadi A, Ater M, Messaoudi Z, El Heit K, Laucou V, Boursiquot JM, Lacombe T, This P, 2011. Genetic diversity of Moroccan grape accessions conserved ex situ compared to Maghreb and Europe gene pools. Tree Genet Genome 7 (6): 1287-1298. https://doi.org/10.1007/s11295-011-0413-3

Felsenstein J, 1989. Phylogeny inference package. Cladistics 5:164-166.

Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho‐Pereira J, Jones GV, 2016. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int J Climatol 36 (1): 1-12. https://doi.org/10.1002/joc.4325

Galet P, 2000. Dictionnaire encylcopédique des cépages. Hachette, Paris.

García de Luján A, Puertas B, Lara M, 1990. Variedades de vid en Andalucía. Junta de Andalucía, Sevilla.

García de los Salmones N, 1914. Memoria General de las Sesiones del Congreso y Ponencias Presentadas. Imprenta Provincial, Pamplona.

Herrera A, 1513. Agricultura General, edición facsimil (1981). Servicio de Publicaciones del Ministerio de Agricultura y Pesca, Madrid.

Ibáñez J, Vargas MA, Palancar M, Borrego J, De Andrés MT, 2009. Genetic relationships among table-grape varieties. Am J Enol Viticult 60(1): 35-47.

Jiménez-Cantizano A, Martínez-Zapater JM, García de Luján A, Arroyo-García R, 2006. Caracterización molecular de accesiones de vid del banco de germoplasma del Rancho de la Merced. 29th World Congress of Vine and Wine, 25-30 Jun, Logroño, Spain.

Jiménez-Cantizano A, 2014. Caracterización molecular del banco de germoplasma de vid del Rancho de la Merced. Doctoral thesis. Universidad de Cádiz, Cádiz, Spain. http://hdl.handle.net/10498/17919

Kobayashi S, Goto-Yamamoto N, Hirochika H, 2004. Retrotransposon-induced mutations in grape skin color. Science 304: 982. https://doi.org/10.1126/science.1095011

Lacombe T, Audeguin I, Boselli M, Bucchetti B, Cabello F, Chatelet P, Crespan M, D'onofrio C, Eiras-Dias J, Ercisli S, et al., 2011. Grapevine European Catalogue: Towards a Comprehensive List. Vitis 50 (2): 65-68.

Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Péros JP, This P, 2013. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126: 401-414. https://doi.org/10.1007/s00122-012-1988-2

Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup J, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P, 2011. High throughput analysis of grape diversity as a tool for germplasm collection management. Theor Appl Genet 122 (6): 1233-1245. https://doi.org/10.1007/s00122-010-1527-y

Lijavetzky D, Ruiz-García L, Cabezas, J A, De Andrés M T, Bravo G, Ibáñez A, Carreño J, Cabello F, Ibáñez J, Martínez-Zapater JM, 2006. Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276 (5): 427-435. https://doi.org/10.1007/s00438-006-0149-1

Lopes M, Sefc K, Eiras-Dias J, Steinkellner H, Da Câmara Machado M, Da Câmara Machado A, 1999. The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor Appl Genet 99: 733-739. https://doi.org/10.1007/s001220051291

Lopes J, Eiras-Dias JE, Abreu F, Climaco P, Cunha JP, Silvestre J, 2008. Thermal requirements, duration and precocity of phenological stages of grapevine cultivars of the Portuguese collection. Ciência Téc Vitivinic 23 (1): 61-71.

Martín JP, Borrego J, Cabello F, Ortiz JM, 2003. Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite site markers. Genome 46: 10-18. https://doi.org/10.1139/g02-098

Martín JP, Arranz C, Castro ID, Yuste J, Rubio JA, Pinto-Carnide O, Ortiz JM, 2011. Prospection and identification of grapevine varieties cultivated in north Portugal and northwest Spain. Vitis 50: 29-33.

Maul E, 2008. Synonymy, homonymy and misnaming are obstacles for an international network on the conservation of Vitis germplasm in Europe. In: Report of a Working Group on Vitis. First Meeting, 12-14 Jun 2003, Palić, Serbia and Montenegro. Bioversity International, 109-115, Rome, Italy.

Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S, 2005. Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15: 349-366. https://doi.org/10.1007/s11032-004-7651-0

Milla-Tapia A, Gómez S, Moncada X, León P, Ibacache A, Rosas M, Carrasco B, Hinrichsen P, Zurita-Silva A, 2013. Naturalised grapevines collected from arid regions in Nothern Chile exhibit a high level of genetic diversity. Aust J Grape Wine Res 19: 299-310. https://doi.org/10.1111/ajgw.12020

Minch E, Ruíz-Linares A, Goldstein D, Feldman M, Kidd JR, Cavalli-Sforza LL, 1997. Microsat 1.5: a computer program for calculating various statistics on microsatellite data. Washington State Univ., Pullman, WA, USA.

OIV, 2009. OIV descriptor list for grape varieties and Vitis species (2nd edition), Dedon, Paris.

Ortiz JM, Martín JP, Borrego J, Chávez J, Rodríguez I, Muñoz G, Cabello F, 2004. Molecular and morphological characterization of a Vitis gene bank for the establishment of a base collection. Genet Resour Crop Evol 51: 403-409. https://doi.org/10.1023/B:GRES.0000023451.09382.45

Page RDM, 1996. TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12 (4): 357-358.

Park SDE, 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. Doctoral thesis. University of Dublin, Dublin, Ireland.

Sefc KM, Regner F, Tureschek E, Glössl J, Steinkellner H, 1999. Identification of microsatellite sequences in Vitis riparia and their application for genotyping of different Vitis species. Genome 42: 367-373. https://doi.org/10.1139/g98-168

This P, Lacombe T, Cadle-Davidson M, Owens CL, 2007. Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114 (4): 723-730. https://doi.org/10.1007/s00122-006-0472-2

Thomas MR, Scott NS, 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86: 985-990. https://doi.org/10.1007/BF00211051

Vargas AM, Velez MD, De Andrés MT, Laucou V, Lacombe T, Boursiquot JM, Borrego J, Ibáñez J, 2007. Corinto bianco: A seedless mutant of Pedro Ximenes. Am J Enol Viticult 58: 540-543.

Vargas AM, De Andrés MT, Borrego J, Ibáñez J, 2009. Pedigrees of fifty tables-grape cultivars. Am J Enol Viticult 60 (4): 525-531.

Veloso MM, Almandanim MC, Baleiras-Couto M, Pereira HS, Carneiro LC, Fevereiro P, Eiras-Dias J, 2010. Microsatellite database of grapevine (Vitis vinifera L.) cultivars used for wine production in Portugal. Cienc Tec Vitivinic 25: 53-61.

Zinelabidine LH, Cunha J, Eiras-Dias JE, Cabello F, Martínez-Zapater JM, Ibáñez J, 2015. Pedigree analysis of the Spanish grapevine cultivar 'Hebén'. Vitis 54: 81-86.

Zyprian E, Topfer R, 2005. Development of microsatellite-derived markers for grapevine genotyping and genetic mapping. NCBI, GeneBank.

Published
2019-01-08
How to Cite
Jiménez-Cantizano, A., Amores-Arrocha, A., Gutiérrez-Escobar, R., & Palacios, V. (2019). Short communication: Identification and relationship of the autochthonous ‘Romé’ and ‘Rome Tinto’ grapevine cultivars. Spanish Journal of Agricultural Research, 16(4), e07SC02. https://doi.org/10.5424/sjar/2018164-13142
Section
Plant breeding, genetics and genetic resources