Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities

Priscilla C. M. Lima, Jéssika L. Abreu, Allyne E. M. Silva, William Severi, Alfredo O. Galvez, Luis O. Brito


A 42-day trial was conducted to evaluate the effects of a low-salinity biofloc system with different stocking densities on water quality and zootechnical performance of Nile tilapia fingerlings (10 g/L). Four treatments were tested at different densities: 500 fish/m³, 750 fish/m³, 1,000 fish/m³ and 1,250 fish/m³, all in triplicate. Fingerlings of Oreochromis niloticus (initial mean weight of 1.17 ± 0.05 g) were stocked in twelve experimental black-plastic tanks (40 L) with no water exchange during the experimental period. Molasses was added daily to the system at 30% of the amount of feed, and fish were given four daily rations of a formulated feed composed of 36% crude protein and 9% lipids. Water quality variables (dissolved oxygen, pH, salinity, TAN, NO2, NO3 and PO43) did not demonstrate significant differences between the treatments. However, significant influences (α ≤ 0.05) of the stocking densities were observed for total suspended solids, settleable solids, final weight, yield, and protein efficiency ratio. The results showed survival over 96%, final weight values between 12 and 18 g, yield between 9.49 and 15.27 kg/m3, water consumption of 52 to 101 L/kg fish, and total time of settling chambers between 238 and 305 h/kg fish. These results indicate a negative effect of stocking density on final weight, survival, alkalinity, NO2, PO43 and water consumption, and a positive effect on yield in Nile tilapia fingerling culture (1-20 g) in a low-salinity biofloc system with densities up to 1000 fish/m³.


aquaculture; growth; water quality; BFT; fish

Full Text:



Abou Y, Fiogbe ED, Micha JC, 2007. Effects of stocking density on growth, yield and profitability of farming Nile tilapia, Oreochromis niloticus L., fed Azolla diet, in earthen ponds. Aquacult Res 38: 595-604.

Alves GFO, Fernandes AFA, de Alvarenga ÉR, Turra EM, de Sousa AB, Teixeira EA, 2017. Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture 479: 564-570.

APHA, AWWA, WEF, 2005. Standard methods for the examinations of the water and wastewater. 12th ed. APHA, Washington, DC, 560 pp.

Avnimelech Y, 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture 264 (1): 140-147.

Avnimelech Y, 2011. Tilapia production using biofloc technology (BFT). Proc 9th Int Symp on Tilapia in Aquaculture; Liping L & Fitzsimmons K (eds.). pp: 362-366. AquaFish Collaborative Research Support Program, Shanghai.

Avnimelech Y, 2012. Biofloc technology-A practical guide book. 2rd ed. The World Aquaculture Society, Baton Rouge, USA. 272 pp.

Azevedo RV, de Oliveira KF, Flores-Lopes F, Teixeira-Lanna EA, Takishita SS, Tavares-Braga LG, 2015. Responses of Nile tilapia to different levels of water salinity/Respuestas de la tilapia del Nilo a diferentes niveles de salinidad del agua. Lat Am J Aquat Res 43 (5): 828-835.

Barcellos LJG, Nicolaiewsky S, De Souza SMG, Lulhier F, 1999. The effects of stocking density and social interaction on acute stress response in Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquacult Res 30 (11-12): 887-892.

Brito LO, Arana LAV, Soares RB, Severi W, Miranda RH, da Silva SMBC, Coimbra MRM, Gálvez AO, 2014. Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kützing). Aquacult Int 22 (5): 1649-1664.

Brito LO, dos Santos IGS, de Abreu JL, de Araújo MT, Severi W, Gàlvez AO, 2016. Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarva e reared in a biofloc system. Aquacult Res 47 (12): 3990-3997.

Colt J, 2006. Water quality requirements for reuse systems. Aquacult Eng 34 (3): 143-156.

Costa A, Fróes R, 2012. Produção de tilápias. Secretaria de Agricultura e Pecuária. Niterói, Brazil. Technical Manual 31.

Crab R, Defoirdt T, Bossier P, Verstraete W, 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356-357: 351-356.

Day SB, Salie K, Stander HB, 2016. A growth comparison among three commercial tilapia species in a biofloc system. Aquacult Int 24 (5): 1309-1322.

De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W, 2008. The basics of bio-flocs technology: the added value for Aquaculture. Aquaculture 277 (3-4): 125-137.

Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Junior ZM, Bossier P, de Schryver P, 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441: 72-77.

El-Sayed Abdel-Fattah M, 2006. Tilapia culture. Oxfordshire: CABI Publ, Wallingford, UK. 277 pp.

Emerenciano M, Gaxiola G, Cuzon G, 2013. Biofloc technology (BFT): A review for aquaculture application and animal food industry. In: Biomass now-cultivation and utilization; Matovic MD (ed.). pp: 301-328. InTech, Manhattan.

Felföldy L, Szabo E, Tothl L, 1987. A biológiai vizminösités. Vizügyi Hodrobiológia Vizdok, Budapest, Hungary. 258 pp.

Ferdous Z, Masum Md A, Ali Md M, 2014. Influence of stocking density on growth performance and survival of monosex tilapia (Oreochromis niloticus) fry. Int J Res Fish Aquacult 4 (2): 99-103.

Golterman HL, Clymo RS, Ohnstad MAM, 1978. Methods for physical and chemical analysis of freshwaters. Blackwell Sci Publ, London. 213 pp.

Hansen HP, Koroleff F, 2007. Determination of nutrients. In: Methods of seawater analysis; Grasshoff K, Kremling K, Ehrhardt M (eds.). pp: 159-226. Blackwell Sci, Oxford.

Hargreaves JA, 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacult Eng 34 (3): 344-363.

Hargreaves, J.A., 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center, SRAC Publication No. 4503. Stoneville, USA. 12 pp.

Kamal AH Md M, Mair GC, 2005. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247 (1-4): 189-201.

Kpundeh MD, Xu P, Yang H, Qiang J, He J, 2013. Stocking densities and chronic zero culture water exchange stress' effects on biological performances, hematological and serum biochemical indices of gift tilapia juveniles (Oreochromis niloticus). J Aquac Res Dev 4 (5): 1-6.

Likongwe JS, Stecko TD, Stauffer Jr. JR, Carline RF, 1996. Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture 146: 37-46.

Lima PCM, 2017. Efeito da adição de Chlorella vulgaris e melaço na qualidade da água e crescimento de alevinos de tilápia do nilo (Oreochromis niloticus) em sistema de bioflocos com baixa salinidade. Master's thesis. Universidade Federal Rural de Pernambuco, Recife, Brazil. 61 pp.

Long L, Yang J, Li Y, Guan C, Wu F, 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448: 135-141.

Luo G, Gao Q, Wang C, Liu W, Sun D, Li L, Tan H, 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422-423: 1-7.

Luz RK, Silva WS, Filho RM, Santos AEH, Rodrigues LA, Takata R, de Alvarenga ÉR, Turra EM, 2012. Stocking density in the larviculture of Nile tilapia in saline water. R Bras Zootec 41 (12): 2385-2389.

Mackereth FJH, Heron J, Talling JF, 1978. Water analysis: some revised methods for limnologists. Blackwell Sci Publ, Oxford, England. 120 pp.

Maeda H, Silva PC, de Castro Oliveira RP, da Silva AM, Pádua DMC, Machado NP, da Silva RH, 2010. Densidade de estocagem na alevinagem de tilápia-do-nilo em tanque-rede. Ciênc Anim Bras 11 (3): 471-476.

Mapenzi LL, Mmochi AJ, 2016. Role of salinity on growth performance of Oreochromis niloticus ♀ and Oreochromis urolepis urolepis ♂ hybrids. J Aquacult Res Dev 7 (6): 431.

Marinho YF, Brito LO, Campos CVFS, Severi W, Andrade HA, Gàlvez AO, 2017. Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquacult Res 48 (8): 4155-4164.

Miranda-Baeza A, Mariscal-López MA, López-Elías JA, Rivas-Vega1 M, Emerenciano M, Sánchez-Romero A, Esquer-Méndez JL, 2017. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture. Aquacult Res 48 (9): 4725-4734.

Moniruzzaman M, Uddin KB, Basak S, Mahmud Y, Zaher M, Bai SC, 2015. Effects of stocking density on growth, body composition, yield and economic returns of monosex tilapia (Oreochromis niloticus L.) under cage culture system in Kaptai Lake of Bangladesh. J Aquacult Res Dev 6 (8): 1-7.

NG WK, Romano N, 2013. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Rev Aquacult 5 (4): 220-254.

Osofero SA, Otubusin SO, Daramola JA, 2009. Effect of stocking density on tilapia (Oreochromis niloticus Linnaeus 1757) growth and survival in bamboo - net cages trial. Afr J Biotechnol 8 (7): 1322-1325.

Pérez-Fuentes JA, Hernández-Vergara MP, Pérez-Rostro CI, Fogel I, 2016. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture 452: 247-251.

Ray AJ, Lotz JM, 2017. Comparing salinities of 10, 20, and 30‰ in intensive, commercial-scale biofloc shrimp (Litopenaeus vannamei) production systems. Aquaculture 476: 29-36.

Ridha MT, 2006. Comparative study of growth performance of three strains of Nile tilapia, Oreochromis niloticus, L. at two stocking densities. Aquacult Res 37 (2): 172-179.

Silva PC, Kronka SN, Tavares LHS, Souza VL, 2002. Desempenho produtivo da tilápia do Nilo (Oreochromis niloticus L.) em diferentes densidades de trocas de água em raceway. Acta Scientiarum Anim Sci 24 (4): 935-941.

Suresh AV, Lin CK, 1992. Effect of stocking density on water quality and production of red tilapia in a recirculated water system. Aquacult Eng 11 (1): 1-22.

Takata R, Luz RK, 2015. Água salinizada na produção de peixes de água doce. In: Aquicultura no Brasil: novas perspectivas; Tavares-Dias M, Mariano WS (eds.). pp: 523-543. Editora Pedro & João, São Carlos.

Thakur DP, Lin CK, 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacult Eng 27 (3): 159-176.

Widanarni W, Ekasari J, Maryam S, 2012. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati J Biosci 19 (2): 73-80.

Zapata-Lovera KP, Brito LO, Lima PCM, Vinatea-Arana LA, Galvez AO, Cárdenas JMV, 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Boletim do Instituto de Pesca 43 (3): 399-407.

DOI: 10.5424/sjar/2018164-13222