Characterization of the antifungal activity of three rhizobacterial strains against Rhizoctonia solani

Deisy Y. Pineda-Mendoza, Apolinar González-Mancilla, Juan J. Almaraz, María P. Rodríguez-Guzmán, Oscar García-Barradas, Rosalba Argumedo-Delira

Abstract


 

In this study, three rhizobacterial strains were characterized by their ability to inhibit Rhizoctonia solani and tested in chili (Capsicum annuum L.) seedlings. Strains A46 and P61 were identified as Pseudomonas tolaasii, and S108 as Rhanella aquatilis. In the dual culture tests, all the strains inhibited the radial growth of R. solani. None of the three strains produced chitinases or volatile compounds, but they were found to produce siderophores. However, this last characteristic was not responsible for the rhizobacterial inhibitory effect on the growth of R. solani, other bacterial metabolites were possibly involved. The bacterial filtrates added to the potato dextrose agar medium (PDA) in a 3:7 ratio had significant antifungal activity, being the filtrate from strain S108 the one that showed the highest effect, with 56% fungal inhibition. The co-culture of strain A46 with the phytopathogenic fungi in potato dextrose broth (PDB) increased the antifungal activity of the rhizobacterial filtrate. The application of the rhizobacterial strains to Serrano chili decreased the R. solani-related mortality rate in seedlings; particularly, S108 had the greatest effect, which was similar to the fungicide effect. This study showed that the S108 strain has potential as a biofungicide to control R. solani in chili seedlings.

Keywords


antagonism; biopesticides; PGPR; fungal inhibition; bacterial metabolites

Full Text:

PDF

References


Abuzar S, 2013. Antagonistic effects of some Pseudomonas fluorescent strains against root rot fungi (Rhizoctonia solani and Fusarium oxysporum) and root-knot nematodes (Meloidogyne incognita) on chili (Capsicum annum). World Appl Sci J 54: 1455-1460.

Akocak P, Churey J, Worobo R, 2015. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Biosci 10: 48-58. https://doi.org/10.1016/j.fbio.2015.01.005

Babalola O, 2010. Beneficial bacteria of agricultural importance. Biotechnol Lett 32: 1559-1570. https://doi.org/10.1007/s10529-010-0347-0

Berendsen RL, Pieterse CM, Bakker PA, 2012. The rhizosphere microbiome and plant health. Trends Plant Sci 17: 478-486. https://doi.org/10.1016/j.tplants.2012.04.001

Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J, 2014. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32: 1180-1204. https://doi.org/10.1016/j.biotechadv.2014.03.001

Brady C, Hunterb G, Kirkb S, Arnolda D, Denman S, 2014. Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Syst Appl Microbiol 37: 545-552. https://doi.org/10.1016/j.syapm.2014.09.001

Brzezinska S, Jankiewicz U, Burkowska A, Walczak M, 2014. Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68: 71-81. https://doi.org/10.1007/s00284-013-0440-4

Calvo J, Calvente V, de Orellano ME, Benuzzi D, de Tosetti MIS, 2007. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113: 251-257. https://doi.org/10.1016/j.ijfoodmicro.2006.07.003

Cao L, Qiu Z, You J, Tan H, Zhou S, 2004. Isolation and characterization of endophytic Streptomyces strains from surface‐sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39: 425-430. https://doi.org/10.1111/j.1472-765X.2004.01606.x

Chauhan A, Balgir PP, Shirkot CK, 2014. Antifungal potential of native strain isolated from rhizosphere soil of Valeriana jatamansi from temperate regions of Himachal Pradesh. J Appl Hortic 16: 131-135.

Chernin L, Zafar I, Shoshan H, Ilan C, 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. J Appl Environ Microbiol 61: 1720-1726.

Cho K, Kim Y, 2003. Two types of ion channel formation of tolaasin, a Pseudomonas peptide toxin. FEMS Microbiol Lett 221: 221-226. https://doi.org/10.1016/S0378-1097(03)00182-4

Commare R, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R, 2002. Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot 21: 671-677. https://doi.org/10.1016/S0261-2194(02)00020-0

Coraiola M, Lo Cantore P, Lazzaroni S, Evidente A, Iacobellis N, Dalla S, 2006. WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochem Biophys Acta 1758: 1713-1722. https://doi.org/10.1016/j.bbamem.2006.06.023

Cray J, Houghton J, Cooke L, Hallsworth JA, 2015. Simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi. Biol Control 81: 93-100. https://doi.org/10.1016/j.biocontrol.2014.11.006

Czaja K, Góralczyk K, Struciński P, Hernik A, Korcz W, Minorczyk M, Lyczewska M, Ludwicki JK, 2015. Biopesticides - towards increased consumer safety in the European Union. Pest Manage Sci 71: 3-6. https://doi.org/10.1002/ps.3829

Dashti Y, Grkovic T, Usama A, Hentschel U, Quinn R, 2014. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs 12: 3046-3059. https://doi.org/10.3390/md12053046

Degelmann DM, Kolb S, Dumont M, Murrell JC, Drake HL, 2009. Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil. FEMS Microbiol Ecol 68; 312-319. https://doi.org/10.1111/j.1574-6941.2009.00681.x

Djinni I, Defant A, Kecha M, Mancini I, 2014. Metabolite profile of marine-derived endophytic Streptomyces sundarbansensis WR1L1S8 by liquid chromatography-mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth. J Appl Microbiol 116: 39-50. https://doi.org/10.1111/jam.12360

Guillén-Cruz R, Hernández-Castillo FD, Gallegos-Morales G, Rodríguez-Herrera R, Aguilar-González CN, Padrón-Corral E, Reyes-Valdés MH, 2006. Bacillus spp. como biocontrol en un suelo infestado con Fusarium spp., Rhizoctonia solani Kuhn y Phytophthora capsici Leonian y su efecto en el desarrollo y rendimiento del cultivo de chile. Rev Mex Fitopatol 24: 105-114.

Huang X, Zhang N, Yong X, Yang X, Shen Q, 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167: 135-143. https://doi.org/10.1016/j.micres.2011.06.002

Inglis PW, Peberdy JF, 1997. Production and purification of chitinase from Ewingella Americana, a recently described pathogen of the mushroom, Agaricus bisporus. FEMS Microbiol Lett 157: 189-194. https://doi.org/10.1111/j.1574-6968.1997.tb12772.x

Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER, 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56: 34-43. https://doi.org/10.1111/j.1574-6941.2005.00048.x

Jha G, Anjaiah V, 2007. Metabolites of rhizobacteria antagonistic towards fungal plant pathogens. Ann Microbiol 57: 127-130. https://doi.org/10.1007/BF03175061

Jung W, Mabood F, Souleimanov A, Whyte L, Niederberger T, Smith D, 2014. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro. Microb Pathog 77: 13-16. https://doi.org/10.1016/j.micpath.2014.10.008

Kämpfer P, 2005. Genus Rahnella. In: Bergey's Manual of Systematic Bacteriology, The Proteobacteria, Part B, The Gammaproteobacteria, vol. 2, 2nd ed.; Brenner DJ, Krieg NR, Staley JT (Eds.), Springer, NY, pp. 759-763.

Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston ND, McGeorge KM, Doty SL, 2017. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol 8: 386. https://doi.org/10.3389/fmicb.2017.00386

Kielak A, Cretoiu M, Semenov A, Soren J, Dirk J, 2013. Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microbiol 79: 263-272. https://doi.org/10.1128/AEM.02546-12

Kumari D, Reddy MS, Upadhyay RC, 2013. Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp. Ann Microbiol 63: 845-853. https://doi.org/10.1007/s13213-012-0535-3

Lavermicocca P, Valerio F, Visconti A, 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69: 634-640. https://doi.org/10.1128/AEM.69.1.634-640.2003

Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW, 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139-1145. https://doi.org/10.1007/s11274-007-9585-2

Li H, Zhang S, Lu J, Ulvko H, Pang X, Sun Y, Xue H, Zhao L, Kong T, Lv J, 2014. Antifungal activities and effect of Lactobacillus casei; ASTI8 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control 43: 57-64. https://doi.org/10.1016/j.foodcont.2014.02.045

Louden B, Haarmann D, Lynne A, 2011. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12: 51-53. https://doi.org/10.1128/jmbe.v12i1.249

Milagres A, Machuca A, Napoleao D, 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37: 1-6. https://doi.org/10.1016/S0167-7012(99)00028-7

Mojica MV, Luna OHA, Sandoval CCF, Pereyra AB, Morales RLH, González ANA, Hernández LCE, Alvarado GOG, 2009. Biological control of chili pepper root rot (Capsicum annuum L.) by Bacillus thuringiensis. Phyton (Buenos Aires, Argent.) 78: 105-110.

Nagarajkumar M, Bhaskaran R, Velazhahan R, 2004. Involvement of secondary metabolites and extracelular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159: 73-81. https://doi.org/10.1016/j.micres.2004.01.005

Naing K, Anees M, Kim S, Nam Y, Kim Y, Kim K, 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol (Heidelberg, Ger.) 64: 55-63.

Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G, 2007. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol 9: 2795-2809. https://doi.org/10.1111/j.1462-2920.2007.01391.x

Oulkadi D, Balland-Bolou-Bi C, Billard P, Kitzinger G, Parrello D, Mustin C, Banon S, 2014. Interactions of three soil bacteria species with phyllosilicate surfaces in hybrid silica gels. FEMS Microbiol Lett 354: 37-45. https://doi.org/10.1111/1574-6968.12421

Pérez S, Cabirol N, George R, Zamudio L, Fernández F, 2007. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70: 127-131. https://doi.org/10.1016/j.mimet.2007.03.023

Pettit RK, 2009. Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83: 19-25. https://doi.org/10.1007/s00253-009-1916-9

Pintado ME, Pintado AI, Malcata FX, 1999. Fate of nitrogen during metabolism of whey lactose by Rahnella aquatilis. J Dairy Sci 82: 2315-2326. https://doi.org/10.3168/jds.S0022-0302(99)75480-9

Pliego C, Ramos C, de Vicente A, Cazorla F, 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340: 505-520. https://doi.org/10.1007/s11104-010-0615-8

Rokni H, Li W, Sanchez A, Sinnaeve D, Rozenski J, Martins J, De Mot R, 2012. Genetic and functional characterization of cyclic lipopeptide white-line-inducing principle (WLIP) production by rice rhizosphere isolate Pseudomonas putida RW10S2. Appl Environ Microbiol 78: 4826-4834. https://doi.org/10.1128/AEM.00335-12

Saithong P, Panthavee W, Boonyaratanakornkit M, Sikkhamondhol C, 2010. Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J Biosci Bioeng 110: 553-557. https://doi.org/10.1016/j.jbiosc.2010.06.004

Saraf M, Pandya U, Thakkar A, 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169: 18-29. https://doi.org/10.1016/j.micres.2013.08.009

Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R, 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26: 556-565. https://doi.org/10.1016/j.cropro.2006.05.007

Schwyn B, Neilands JB, 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9

Seiber J, Coats J, Duke S, Gross D, 2014. Biopesticides: state of the art and future opportunities. J Agric Food Chem 62: 11613-11619. https://doi.org/10.1021/jf504252n

Shin S, Lim Y, Lee S, Yang N, Rhee J, 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods 44: 89-95. https://doi.org/10.1016/S0167-7012(00)00229-3

Smith SH, 2015. In the shadow of a pepper-centric historiography: Understanding the global diffusion of capsicums in the sixteenth and seventeenth centuries. J Ethnopharmacol 167: 64-77. https://doi.org/10.1016/j.jep.2014.10.048

Sulochana M, Jayachandra S, Kumar S, Dayanand A, 2014. Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 54: 418-424. https://doi.org/10.1002/jobm.201200770

Sunhee L, Geunhyeong J, Doseok H, Yoonkyung W, Younggiu L, Yeonjoong Y, Kyungrai K, Jiye H, Young KK, Dong WK, Yoongho L, 2011. A peptide produced by Pseudomonas tolaasi, tolaasin binds to metal ions. J Korean Soc Appl Biol Chem (Korean Ed.) 54: 633-636.

Velásquez-Valle R, Medina-Aguilar M, Luna-Ruiz J, 2001. Sintomatología y géneros de patógenos asociados con las pudriciones de la raíz del chile (Capsicum annuum L.) en el Norte-Centro de México. Rev Mex Fitopatol 19: 175-181.

Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Eduardo Valencia-Cantero E, 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339: 329-340. https://doi.org/10.1007/s11104-010-0583-z

Wang Y, Fang X, An F, Wang G, Zhang X, 2011. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb Cell Fact 10: 1-15. https://doi.org/10.1186/1475-2859-10-98

Youssef SA, Tartoura KA, Abdelraouf GA, 2016. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control 100: 79-86. https://doi.org/10.1016/j.biocontrol.2016.06.001

Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ, 2013. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. Plos One 8 (7): e68317. https://doi.org/10.1371/journal.pone.0068317

Zhang L, Khabbaz SE, Wang A, Li H, Abbasi PA, 2015. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato. J Appl Microbiol 118: 685-703. https://doi.org/10.1111/jam.12728

Zhao P, Quan C, Jin L, Wang L, Wang J, Fan S, 2013. Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol 29: 401-409. https://doi.org/10.1007/s11274-012-1180-5




DOI: 10.5424/sjar/2018164-13334