Quality assessment of composts officially registered as organic fertilisers in Spain

Belén Puyuelo, Joseba S. Arizmendiarrieta, Ignacio Irigoyen, Ramón Plana

Abstract


Composting of organic wastes is a management strategy linked to circular economy models through the transformation of these wastes into an organic product, compost, which can be used as fertiliser, soil amendment or growing media. However, the concept of ‘compost quality’ is not enough defined to take a technical decision about which is its best use or application. In the last decade, different guidelines and regulations about organic fertilisers have been developed. For instance, in Spain the Fertilisers Regulation categorises compost under five kinds according to the raw materials used - organic amendment compost (OaC), manure compost (MaC), green compost (GrC), vermicompost (VC), ‘alperujo’ compost (AlC) -, and under three quality levels (A, B or C) depending exclusively on the heavy metals content. This work analyses the national database of all composts (307) marketed in Spain, considering the analytical parameters declared, with the objective of proposing a methodology to define a global quality index. For this assessment, two indicators are employed: a fertility indicator, related to the nutrients content, and a clean indicator, related to the heavy metals content. Results show an average compost formulation 2.5:2.5:2.5 (N:P2O5:K2O). MaC and OaC present the highest fertility indicator, whereas VC the lowest. Regarding the clean indicator, GrC, MaC and VC are cleaner than OaC. In the future, this new quality assessment should be completed by including other indicators related to physical and biological characteristic (e.g. porosity, stability/maturity, phytotoxicity) that could determine the most proper use of compost.

Keywords


compost quality; heavy metals; macronutrients; maturity; fertility indicator; clean indicator

Full Text:

PDF HTML XML

References


AEAT, 2017. Estadísticas de comercio exterior [Foreign Trade Statistics]. Agencia Española de Administración Tributaria [Tax Administration Agency, Dept. of Customs & Special Taxes]. https://www.agenciatributaria.es/AEAT.internet/Inicio/La_Agencia_Tributaria/Aduanas_e_Impuestos_Especiales/_Presentacion/Estadisticas_de_Comercio_Exterior/_DESCARGA_Y_DATOS/Datos_estadisticos/Datos_estadisticos.shtml

Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD, 2008. Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39: 91-99. https://doi.org/10.1016/j.apsoil.2007.11.010

Austrian Compost Ordinance, 2001. Verordnung über Qualitätsanforderungen an Komposte aus Abfällen (Kompostverordnung). BGBl II 292/2001, Wien. http://extwprlegs1.fao.org/docs/pdf/aut90980.pdf

BOE, 2011. Law 22/2011, of 28th July, on waste and contaminated soils. Boletín Oficial del Estado (España) No. 181, 29 Jul 2011. https://www.boe.es/eli/es/l/2011/07/28/22

BOE, 2017. RD 999/2017, de 24 de noviembre, por el que se modifica el RD 506/2013, de 28 de junio, sobre productos fertilizantes. Boletín Oficial del Estado (España) No. 296, 6 Nov 2017. https://www.boe.es/eli/es/rd/2017/11/24/999

Brinton WF, 2000. Compost quality standards and guidelines. [Final Report]. Woods End Res Lab Inc., USA. http://compost.css.cornell.edu/

CCME, 2005. Canada – Guidelines for compost quality. PN 1340. Canadian Council of Ministers of the Environment. https://www.ccme.ca/files/Resources/waste/organics/compostgdlns_1340_e.pdf

Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A, 2017. Composting of food wastes: Status and challenges. Review. Bioresour Technol 248: 57-67. https://doi.org/10.1016/j.biortech.2017.06.133

Das D, Bhattacharyya P, Ghosh BC, Banik P, 2012. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation. J Environ Sci Health B 47: 205-211. https://doi.org/10.1080/03601234.2012.634346

DRE, 2015. Law Decree 103/2015 of June 15th. Diário da República (Portugal), 1ª serie No. 114 15 June 2015. https://dre.pt/application/conteudo/67485179

EC, 2003. Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 Oct 2003 relating to fertilisers. 21 Nov 2003. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32003R2003

EC, 2008. Directive 2008/98/EC of the European Parliament of the Council of 19 November 2008 on waste and repealing certain directives. 19 Nov 2008. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098

EC, 2015. Commission Decision (EU) 2015/2099, of 18 Nov 2015, establishing the ecological criteria for the award of the EU Ecolabel for growing media, soil improvers and mulch. 10 Feb 2001. https://publications.europa.eu/en/publication-detail/-/publication/6fefebf7-8f53-11e5-983e-01aa75ed71a1

EEC, 1991. Council Regulation (EEC) No 2092/91, of 24 June 1991, on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. 24 June 1991. https://publications.europa.eu/en/publication-detail/-/publication/79cf3c57-e66f-4932-a653-c45dc68e3665

Genevini PL, Adani F, Borio D, Tambone F, 1997. Heavy metal content in selected European commercial composts. Compost Sci Utiliz 5: 31-39. https://doi.org/10.1080/1065657X.1997.10701895

Govind P, Madhuri S, 2014. Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci 2: 17-23.

Haddad G, El-Ali F, Mouneimne AH, 2015. Humic matter of compost: Determination of humic spectroscopic ratio (E4/E6). Curr Sci Int 4: 56-72.

Hsu J, Lo S, 2000. Characterization and extractability of copper, manganese, and zinc in swine manure composts. J Environ Qual 29: 447-453. https://doi.org/10.2134/jeq2000.00472425002900020012x

Hsu J, Lo S, 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ Pollut 114: 119-127. https://doi.org/10.1016/S0269-7491(00)00198-6

Huerta O, López M, Soliva M, Zaloña M, 2008. Compostaje de residuos municipales: Control del proceso, rendimiento y calidad del producto. Compostaje de residuos municipales. ESAB-ARC, 330 pp.

Huerta O, Gallart M, Soliva M, Martínez F, López M, 2011. Effect of collection system on mineral content of biowaste. Resour Conserv Recycl 55: 1095-1099. https://doi.org/10.1016/j.resconrec.2011.06.008

Jasinski SM, 2017. US Geological Survey. Mineral commodity summaries.

Jiménez EI, Pérez V, 1992. Determination of maturity indices for city refuse composts. Agr Ecosyst Environ 38: 331-343. https://doi.org/10.1016/0167-8809(92)90154-4

Ko HJ, Kim KY, Kim HT, Kim CN, Umeda M, 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage 28: 813-820. https://doi.org/10.1016/j.wasman.2007.05.010

Larsen Ib, 1993. Organic wastes. A resource or an environmental problem? A view at the European scene. Agency of Environmental Protection City of Copenhagen. 4th ed. 18.

Liu F, Zhu P, Xue J, 2012. Comparative study on physical and chemical characteristics of sludge vermicomposted by Eisenia fetida. Procedia Environ Sci 16: 418-423. https://doi.org/10.1016/j.proenv.2012.10.058

López Arias M, Grau Corbí JM, 2005. Metales pesados, materia orgánica y otros parámetros de la capa superficial de los suelos agrícolas y de pastos de la España peninsular. II: Resultados por provincias. INIA, MMA, MAPA. ISBN 84-7498-501-3.

Martínez M, Ortega R, Janssens M, Angulo J, Fincheira P, 2016. Selection of maturity indices for compost derived from grape pomace. J Plant Nutr Soil Sci 16: 262-267.

MITECO, 2018. Registro de Productos Fertilizantes. Ministry for the Ecological Transition, Spain. http://www.magrama.es/app/consultafertilizante/consultafertilizante.aspx [30 March 2018].

Offizial Gazzete, 1985. Fertilisers Act 1985 No 5 (formerly Fertilizers Act 1985). 27 Nov. p 3324. India.

Oviedo E, Torres P, Marmolejo L, Hoyos, L, González S, Barrena R, Komilis D, Sánchez A, 2015. Stability and maturity of biowaste composts derived by small municipalities: correlation among physical, chemical and biological indices. Waste Manage 44: 63-71. https://doi.org/10.1016/j.wasman.2015.07.034

Pimentel D, Burgess M, 2013. Soil erosion threatens food production. Agriculture 3: 443-463. https://doi.org/10.3390/agriculture3030443

Puig I, Campos LM, López M, Martínez X, 2016. Report: Analysis of the compost quality produced in Catalonia as a function of the percentage of inert materials included in the raw material (OFMSW). Catalan Waste Agency.

Puyuelo B, Ponsá S, Gea T, Sánchez A, 2011. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85: 653-659. https://doi.org/10.1016/j.chemosphere.2011.07.014

Saha JK, Panwar N, Singh MV, 2010. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manage 30: 192-201. https://doi.org/10.1016/j.wasman.2009.09.041

Saveyn H, Eder P, 2014. End-of-waste criteria on Biodegradable waste subject to biological treatment (2nd draft). Joint Research Center. Report EUR 26425 EN/SSN 1831-9424.

Spiers GA, Gagnon D, Nason GE, Packee EC, Lousier JD, 1986. Effects and importance of indigenous earthworms on decomposition and nutrient cycling in coastal forest systems‬. Can J For Res 16: 983-989‬.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ https://doi.org/10.1139/x86-172

Swati A, Hait S, 2017. Fate and bioavalability of heavy metals during vermicomposting of various organic wastes - A review. Proc Safe Environ Prot 109: 30-45. https://doi.org/10.1016/j.psep.2017.03.031

Walsh DC, 2002. Urban residential refuse composition and generation rates for the 20th century. Environ Sci Technol 36: 4936-4942. https://doi.org/10.1021/es011074t

Wang P, Changa CM, Watson ME, Dick WA, Chen Y, 2004. Maturity indices for composted dairy and pig manures. Soil Biol Biochem 36: 767-776. https://doi.org/10.1016/j.soilbio.2003.12.012

Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, Lei C, 2017. Specification of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour Technol 245: 411-418. https://doi.org/10.1016/j.biortech.2017.08.118

Zdruli P, Jones RJA, Montanarella L, 2004. Organic matter in the soils of Southern Europe. European Soil Bureau Research Report. 15, EUR 21083 EN, 17. Office for Official Publications of the European Communities, Luxembourg.

Zhang BG, Li GT, Shen TS, Wang JK, Sun Z, 2000. Changes in microbial biomass C, N and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32: 2055-2062. https://doi.org/10.1016/S0038-0717(00)00111-5




DOI: 10.5424/sjar/2019171-13853