Does pollen diversity influence honey bee colony health?

Sandra Barroso-Arévalo, Marina Vicente-Rubiano, José A. Ruiz, Antonio Bentabol, José M. Sánchez-Vizcaíno

Abstract


Aim of study: Colony losses of the western honey bee Apis mellifera have increased alarmingly in recent years. These losses have been attributed to nutritional deficiency, environmental conditions, viral infection and the global presence of the ectoparasite mite Varroa destructor. Ensuring pollen availability may improve colony health, so the present study aimed to examine whether the diversity of pollen collected by the colony as well as landscape characteristics of apiaries influence colony health.

Area of study: Tenerife Island (Canary Islands, Spain).

Material and methods: Colonies at eight apiaries were sampled in late summer to determine colony strength, presence of varroa and load of DWV. Pollen was collected during six months and analyzed. Landscape of each apiary was spatially analyzed.

Main results: Pollen diversity did not correlate significantly with colony strength or the load of DWV, but it positively correlated with varroa levels. In contrast, DWV load correlated with varroa infestation, and both variables negatively correlated with colony strength. Weak colonies were located in landscapes with areas less suitable for bee nutrition.

Research highlights: These results suggest that DWV and varroa infection as well as landscape characteristics influence colony survival, while pollen diversity on its own does not seem to have direct relationship. Our findings highlight the usefulness of DWV and varroa as predictors of colony losses, and they suggest the need to carefully assess honey bee apiary location in order to ensure adequate nutritional resources.


Keywords


viruses; DWV; varroa; colony losses; nutrition; landscape

Full Text:

PDF HTML XML

References


Agency EE, 2006. Corine Land Cover, seamless vector data (vers. 17). https://land.copernicus.eu/

Alaux C, Ducloz F, Crauser D, Le Conte, Y, 2010. Diet effects on honeybee immunocompetence. Biol Lett 6 (4): 562-565. https://doi.org/10.1098/rsbl.2009.0986

Alaux C, Dantec C, Parrinello H, Le Conte Y, 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 12: 496. https://doi.org/10.1186/1471-2164-12-496

Amiri E, Meixner M, Nielsen SL, Kryger P, 2015. Four categories of viral infection describe the health status of honey bee colonies. PLoS One 10 (10): e0140272. https://doi.org/10.1371/journal.pone.0140272

Antunez K, Anido M, Branchiccela B, Harriet J, Campa J, Invernizzi C, Santos E, Higes M, Martín-Hernández R, Zunino P, 2015. Seasonal variation of honeybee pathogens and its association with pollen diversity in Uruguay. Microb Ecol 70 (2): 522-533. https://doi.org/10.1007/s00248-015-0594-7

Asensio I, Vicente-Rubiano M, Munoz MJ, Fernandez-Carrion E, Sanchez-Vizcaino JM, Carballo M, 2016. Importance of ecological factors and colony handling for optimizing health status of apiaries in mediterranean ecosystems. PLoS One 11 (10): e0164205. https://doi.org/10.1371/journal.pone.0164205

Barroso-Arévalo S, Fernández-Carrión E, Goyache J, Molero F, Puerta F, Sánchez-Vizcaíno JM, 2019. High load of Deformed Wing Virus and varroa destructor infestation are related to weakness of honey bee colonies in Southern Spain. Front Microbiol 10 (1331): 1-8. https://doi.org/10.3389/fmicb.2019.01331

Brodschneider R, Crailsheim K, 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278-294. https://doi.org/10.1051/apido/2010012

Carreck NL, Ball BV, Martin S, 2010. Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J Apic Res 49 (1): 93-94. https://doi.org/10.3896/IBRA.1.49.1.13

Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, vanEngelsdorp D, Evans JD, 2012. Pathogen webs in collapsing honey bee colonies. PLoS One 7 (8): e43562. https://doi.org/10.1371/journal.pone.0043562

Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, et al., 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318 (5848): 283-287. https://doi.org/10.1126/science.1146498

Dainat B, Evans JD, Chen Y, Gauthier L, Neumann P, 2012. Predictive markers of honey bee colony collapse. PLoS One 7 (2): e32151. https://doi.org/10.1371/journal.pone.0032151

Dainat B, Neumann P, 2013. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J Invertebr Pathol 112: 278-280. https://doi.org/10.1016/j.jip.2012.12.009

Decourtye A, Mader E, Desneux N, 2010. Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41 (3): 264-277. https://doi.org/10.1051/apido/2010024

Delaplane KS, van der Steen J, Guzman-Novoa E, 2013. Standard methods for estimating strength parameters of Apis mellifera colonies. J Apic Res 52 (1): 1-12. https://doi.org/10.3896/IBRA/1.52.1.03

Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Jean-Luc B, Alaux C, 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity Matter? PLoS One 8 (8): e72016. https://doi.org/10.1371/journal.pone.0072016

Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V, Caprio E, Nazzi F, Pennacchio F, 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. P Natl Acad Sci USA 113 (12): 3203-3208. https://doi.org/10.1073/pnas.1523515113

Dietemann V, Ellis J, Neumann P, 2013. The Coloss Beebook, Vol I, standard methods for Apis mellifera research: introduction. J Apic Res 52: 1-4. https://doi.org/10.3896/IBRA.1.52.4.23

Dietemann V, Nazzi F, Martin S, Anderson D, Locke B, Delaplane K, Wauquiez, Tannahill C, Frey E, Ziegelmann B, Rosenkranz P, Ellis J, 2012. Standard methods for varroa research. J Apic Res 52 (1): 1-54. https://doi.org/10.3896/IBRA.1.52.1.09

ESRI, 2011. ArcGIS Desktop: Release 10. Environ Syst Res Inst, Redlands, CA, USA.

Evans JD, Hung AC, 2000. Molecular phylogenetics and the classification of honey bee viruses. Archiv Virol 145 (10): 2015-2026. https://doi.org/10.1007/s007050070037

Evans JD, Cook SC, 2018. Genetics and physiology of Varroa mites. Curr Opin Insect Sci 26: 130-135. https://doi.org/10.1016/j.cois.2018.02.005

Field C, Johnson I, Schley P, 2002. Nutrients and their role in host resistance to infection. J Leukoc Bio 71 (1): 16-32.

Francis R, Nielsen S, Kryger P, 2013. Varroa-virus interaction in collapsing honey bee colonies. PLoS One 8 (3): e57540. https://doi.org/10.1371/journal.pone.0057540

Gallant AL, Euliss NH, Browning Z, 2014. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services. PLoS One 9 (6): e99268. https://doi.org/10.1371/journal.pone.0099268

Gisder S, Genersch E, 2017. Viruses of commercialized insect pollinators. J Invertebr Pathol 147: 51-59. https://doi.org/10.1016/j.jip.2016.07.010

Grafcan, 2015. Geographical Information System of Canary Islands. http://visor.grafcan.es/visorweb

Haydak MH, 1970. Honey bee nutrition. Annu Rev Entomol 15 (1): 143-156. https://doi.org/10.1146/annurev.en.15.010170.001043

Henríquez Jiménez F, Paricio Núñez E, 1979. Manual práctico de apicultura para las Islas Canarias. Consejería de Agricultura y Pesca, Santa Cruz de Tenerife. https://mdc.ulpgc.es/cdm/ref/collection/MDC/id/43961

Highfield AC, El Nagar A, Mackinder LC, Noël LMLJ, Hall MJ, Martin S, Schroeder D, 2009. Deformed Wing Virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol 75 (22): 7212-7220. https://doi.org/10.1128/AEM.02227-09

IBM, 2013. SPSS Statistics for Windows (vers 22.0). Armonk, NY. http://www-01.ibm.com/software/es/analytics/spss/

Jacques A, Laurent M, Consortium E, Ribière-Chabert M, Saussac M, Bougeard S, Budge GE, Hendrikx P, Chauzat MP, 2017. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS One 12 (3): e0172591. https://doi.org/10.1371/journal.pone.0172591

Kang Y, Blanco K, Davies T, Wang Y, 2015. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math Biosci 275: 71-92. https://doi.org/10.1016/j.mbs.2016.02.012

Keller I, Fluri P, Imdorf A, 2005. Pollen nutrition and colony development in honey bees-Part II. Bee World 86 (2): 27-34. https://doi.org/10.1080/0005772X.2005.11099650

Kielmanowicz MG, Inberg A, Lerner IM, Golani Y, Brown N, Turner CL, Hayes GJR, Ballam JM, 2015. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLOS Pathogens 11 (4): e1004816. https://doi.org/10.1371/journal.ppat.1004816

Kukielka D, Esperón F, Higes M, Sánchez-Vizcaíno JM, 2008a. A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera. J Virol Meth 147 (2): 275-281. https://doi.org/10.1016/j.jviromet.2007.09.008

Kukielka D, Perez A, Higes M, del Carmen Bulboa M, Sánchez-Vizcaíno JM, 2008b. Analytical sensitivity and specificity of a RT-PCR for the diagnosis and characterization of the spatial distribution of three Apis mellifera viral diseases in Spain. Apidologie 39 (6): 607-617. https://doi.org/10.1051/apido:2008040

Kunkel, G, 1991. Flora y vegetación del archipiélago Canario. Tratado florístico, 2ª parte. Edirca, Las Palmas de Gran Canaria.

Louveaux J, Maurizio A, Vorwohl G, 1978. Methods of Melissopalynology. Bee World 59 (4): 139-157. https://doi.org/10.1080/0005772X.1978.11097714

Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I, 2009. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18 (1): 55-60. https://doi.org/10.1111/j.1365-2583.2009.00847.x

MAPA, 2018. El sector apícola en cifras. Principales indicadores económicos. Ministerio de Agricultura, Pesca y Alimentación, Spain.

McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML, 2018. Honey bee and bumble bee antiviral defense. Viruses 10 (8): 395. https://doi.org/10.3390/v10080395

Naug D, 2009. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv 142 (10): 2369-2372. https://doi.org/10.1016/j.biocon.2009.04.007

Nazzi F, Pennacchio F, 2018. Honey bee antiviral immune barriers as affected by multiple stress factors: a novel paradigm to interpret colony health decline and collapse. Viruses 10 (4): 159. https://doi.org/10.3390/v10040159

Ramírez-Arriaga E, Navarro-Calvo LA, Díaz-Carbajal E, 2011. Botanical characterisation of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. Grana 50 (1): 40-54. https://doi.org/10.1080/00173134.2010.537767

Rodriguez-Franco JJ, Cuevas E, 2013. Characteristics of the subtropical tropopause region based on long-term highly resolved sonde records over Tenerife. J Geophys Res: Atmospheres 118 (19): 10754-10769. https://doi.org/10.1002/jgrd.50839

Roulston TH, Buchmann S, 2000. A phylogenetic reconsideration of the pollen starch-pollination correlation. Evol Ecol Res 2: 627-643.

Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, Mead A, Burroughs N, Evans JD, 2014. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog 10 (6): e1004230. https://doi.org/10.1371/journal.ppat.1004230

Schroeder D, Martin S, 2012. Deformed wing virus: The main suspect in unexplained honeybee deaths worldwide. Virulence 3 (7): 589-591. https://doi.org/10.4161/viru.22219

Schmidt J, C Thoenes S, Levin M, 1987. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann Entomol Soc Am 80 (2): 176-183. https://doi.org/10.1093/aesa/80.2.176

Shannon CE, Weaver W, 1949. The mathematical theory of communication. Univ. Illinois Press, Champaign, IL, USA.

Silva L, Restrepo S, 2012. Flora apícola: determinación de la oferta floral apícola como mecanismo para optimizar producción, diferenciar productos de la colmena y mejorar la competitividad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia.

Simioni LC, Mussury RM, Mauad M, Dresh DM, Pereira FF, Scalon SPQ, 2015. Plant-pollinator interactions in Crambe abyssinica Hochst. (Brassicaceae) associated with environmental variables. Anais da Academia Brasileira de Ciências 87: 137-145. https://doi.org/10.1590/0001-3765201520130365

Standifer LN, 1980. Honey bee nutrition and supplemental feeding. Agriculture Handbook 335: 39-45. http://bulletswww.three-peaks.net/PDF/Honey%20Bee%20Nutrition%20and%20Supplemental%20Feeding.pdf

Stanley RG, 1974. Pollen: biology, biochemistry, management. Springer-Verlag, Berlin.

vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Unerwood R, Tarpy DR, Pettis JS, 2009. Colony collapse disorder: a descriptive study. PLoS One 4 (8): e6481. https://doi.org/10.1371/journal.pone.0006481

Winfree R, Williams NM, Dushoff J, Kremen C, 2007. Native bees provide insurance against ongoing honey bee losses. Ecol Lett 10 (11): 1105-1113. https://doi.org/10.1111/j.1461-0248.2007.01110.x

Yang X, Cox-Foster DL, 2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. P Natl Acad Sci USA 102 (21): 7470-7475. https://doi.org/10.1073/pnas.0501860102




DOI: 10.5424/sjar/2019173-13991