Effect of warming temperatures on donkey sperm vitrification in 0.5 mL straws in comparison to conventional freezing

Maria Diaz-Jimenez, Jesus Dorado, Cesar Consuegra, Blasa Pereira, Isabel Ortiz, Cristina Vazquez, Evgenia Isachenko, Vladimir Isachenko, Manuel Hidalgo

Abstract


Aim of study: There is little information about vitrification of sperm in large volumes (up to 0.5 mL). This study aimed to develop the vitrification technique in 0.5 mL straws in donkey sperm, evaluating the effect of three warming temperatures.

Area of study: Cordoba, Spain.

Material and methods: Ejaculates from five donkeys were divided in four groups: one control subjected to conventional slow freezing (C) and three vitrified in 0.5 mL straws and warmed using different protocols (W1: 37ºC/30s, W2: 43ºC/20s and W3: 70ºC/8s+37ºC/52s). Sperm motility, kinematic parameters, plasma membrane and acrosome integrity were evaluated. Conventional freezing resulted in significantly higher values for total (42.7±19.6%), and progressive motility (30.3±16.7%), plasma membrane (49.1±10.4%) and acrosome integrity (39.6±14.5%) respect to vitrification method.

Main results: Values after warming ranged between 0.2-2.8% for total motility; 0.2-2.1% for progressive motility; 5.5-20.0% for plasma membrane integrity and 14.5-29.8% for acrosome integrity in all warming protocols after sperm vitrification. However, no differences were found between W3 and C for kinematic parameters; and W3 resulted in significantly higher values for membrane integrity (20.0±11.0%) in comparison to W1 (5.5±3.6%) and W2 (9.3±8.4%).

Research highlights: High warming rates seem to be better for donkey sperm vitrification in large volumes; but this methodology is still not an alternative to conventional sperm freezing.

Keywords


equine; cryopreservation; large-volume vitrification; aseptic; thawing

Full Text:

PDF HTML XML

References


Arraztoa CC, Miragaya MH, Chaves MG, Trasorras VL, Gambarotta MC, Neild DM, 2017. Porcine sperm vitrification II: Spheres method. Andrologia 49(8): e12738. https://doi.org/10.1111/and.12738

Athurupana R, Ioki S, Funahashi H, 2015. Rapid thawing and stabilizing procedure improve postthaw survival and in vitro penetrability of boar spermatozoa cryopreserved with a glycerol-free trehalose-based extender. Theriogenology 84(6): 940-947. https://doi.org/10.1016/j.theriogenology.2015.05.033

BOE, 2013. Royal decree 53/2013, of 1 February, that establishes basic rules on animal welfare in experimentation, education and other scientific ends. Boletín Oficial del Estado (Spain) No. 34, 01/02/13.

Caturla-Sánchez E, Sánchez-Calabuig MJ, Pérez-Gutiérrez JF, Cerdeira J, Castaño C, Santiago-Moreno J, 2018. Vitrification of dog spermatozoa: Effects of two cryoprotectants (sucrose or trehalose) and two warming procedures. Cryobiology 80: 126-129. https://doi.org/10.1016/j.cryobiol.2017.11.001

Consuegra C, Crespo F, Dorado J, Ortiz I, Diaz-Jimenez M, Pereira B, Hidalgo M, 2018. Comparison of different sucrose-based extenders for stallion sperm vitrification in straws. Reprod Domest Anim 53 (Suppl 2): 59-61. https://doi.org/10.1111/rda.13265

Daramola JO, Adekunle EO, Iyasere OS, Oke OE, Sorongbe TA, Iyanda OA, Kehinde AR, Aluko SP, Olaoye IO, Gbadebo OE, et al., 2016. Effects of coconut milk alone or supplementation with pyridoxine in tris-extenders on viability of buck spermatozoa during vitrification. Small Ruminant Res 136: 208-213. https://doi.org/10.1016/j.smallrumres.2016.02.004

De Oliveira RA, Budik S, Aurich C, 2017. Influence of partial or total replacement of glycerol by alternative cryoprotectants in Ghent freezing extender on post-thaw sperm quality in stallions. Reprod Domest Anim 52(5): 715-721. https://doi.org/10.1111/rda.12970

Diaz-Jimenez M, Pereira B, Ortiz I, Consuegra C, Partyka A, Dorado J, Hidalgo M, 2017. Effect of different extenders for donkey sperm vitrification in straws. Reprod Domest Anim 4 (52): 55-57. https://doi.org/10.1111/rda.13057

Diaz-Jimenez M, Dorado J, Ortiz I, Consuegra C, Pereira B, Gonzalez-De Cara CA, Aguilera R, Mari G, Mislei B, Love CC, et al., 2018a. Cryopreservation of donkey sperm using non-permeable cryoprotectants. Anim Reprod Sci 189: 103-109. https://doi.org/10.1016/j.anireprosci.2017.12.013

Diaz-Jimenez M, Dorado J, Pereira B, Ortiz I, Consuegra C, Bottrel M, Ortiz I, Hidalgo M, 2018b. Vitrification in straws conserves motility features better than spheres in donkey sperm. Reprod Domest Anim 53 (2): 1-3. https://doi.org/10.1111/rda.13256

Dorado J, Acha D, Ortiz I, Gálvez MJ, Carrasco JJ, Gómez-Arrones V, Calero-Carretero R, Hidalgo M, 2014. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved Andalusian donkey (Equus asinus) spermatozoa. Anim Reprod Sci 146 (1-2): 79-88. https://doi.org/10.1016/j.anireprosci.2014.02.009

El-Badry DA, Abo El-Maaty AM, El Sisy GA, 2017. The effect of trehalose supplementation of INRA-82 extender on quality and fertility of cooled and frozen-thawed stallion spermatozoa. J Equin Vet Sci 48: 86-92. https://doi.org/10.1016/j.jevs.2016.08.020

Garner DL, 2006. Flow cytometric sexing of mammalian sperm. Theriogenology 65 (5): 943-957. https://doi.org/10.1016/j.theriogenology.2005.09.009

Gomendio M, Roldan ER, 2008. Implications of diversity in sperm size and function for sperm competition and fertility. Int J Dev Biol 52 (5-6): 439-447. https://doi.org/10.1387/ijdb.082595mg

Gonzalez-Castro RA, Carnevale EM, 2019. Use of microfluidics to sort stallion sperm for intracytoplasmic sperm injection. Anim Reprod Sci 202: 1-9. https://doi.org/10.1016/j.anireprosci.2018.12.012

Hidalgo M, Ortiz I, Dorado J, Morrell JM, Gosálvez J, Consuegra C, Diaz-Jimenez M, Pereira B, Crespo F, 2017. Stallion sperm selection prior to freezing using a modified colloid swim-up procedure without centrifugation. Anim Reprod Sci 185: 83-88. https://doi.org/10.1016/j.anireprosci.2017.08.005

Hidalgo M, Consuegra C, Dorado J, Diaz-Jimenez M, Ortiz I, Pereira B, Sanchez R, Crespo F, 2018. Concentrations of non-permeable cryoprotectants and equilibration temperatures are key factors for stallion sperm vitrification success. Anim Reprod Sci 196: 91-98. https://doi.org/10.1016/j.anireprosci.2018.06.022

Hinrichs K, Loux SC, 2012. Hyperactivated sperm motility: Are equine sperm different? J Equin Vet Sci 32(8): 441-444. https://doi.org/10.1016/j.jevs.2012.05.070

Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F, 2003. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod BioMed Online 6(2): 191-200. https://doi.org/10.1016/S1472-6483(10)61710-5

Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko I, Nawroth F, Dessole S, Katkov II, der Ven Hv, 2005. Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod BioMed Online 10 (3): 350-354. https://doi.org/10.1016/S1472-6483(10)61795-6

Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, Lulat AGMI, Risopatrón MJ, Sánchez R, 2008. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction 136 (2): 167-173. https://doi.org/10.1530/REP-07-0463

Isachenko V, Maettner R, Petrunkina AM, Mallmann P, Rahimi G, Sterzik K, Sanchez R, Risopatron J, Damjanoski I, Isachenko E, 2011. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab 57 (9-10): 643-650.

Jiménez-Rabadán P, García-Álvarez O, Vidal A, Maroto-Morales A, Iniesta-Cuerda M, Ramón M, del Olmo E, Fernández-Santos R, Garde JJ, Soler AJ, 2015. Effects of vitrification on ram spermatozoa using free-egg yolk extenders. Cryobiology 71 (1): 85-90. https://doi.org/10.1016/j.cryobiol.2015.05.004

Katkov I, Bolyukh V, Chernetsov O, Dudin P, Grigoriev A, Isachenko V, Isachenko E, Lulat A, Moskovtsev S, Petrushko M, et al., 2012. Kinetic Vitrification of spermatozoa of vertebrates: What can we learn from nature? Current Frontiers in Cryobiology. I. Katkov. Rijeka, InTechOpen: 3-40. https://doi.org/10.5772/34784

Lone SA, 2018. Possible mechanisms of cholesterol-loaded cyclodextrin action on sperm during cryopreservation. Anim Reprod Sci 192: 1-5. https://doi.org/10.1016/j.anireprosci.2018.03.009

Madison RJ, Evans LE, Youngs CR, 2013. The effect of 2-hydroxypropyl-β-cyclodextrin on post-thaw parameters of cryopreserved jack and stallion semen. J Equin Vet Sci 33 (4): 272-278. https://doi.org/10.1016/j.jevs.2012.07.021

Mansilla MA, Merino O, Risopatrón J, Isachenko V, Isachenko E, Sánchez R, 2016. High temperature is essential for preserved human sperm function during the devitrification process. Andrologia 48 (1): 111-113. https://doi.org/10.1111/and.12406

Oliveira JVd, Oliveira PVdLF, Melo e Oña CM, Guasti PN, Monteiro GA, Sancler da Silva YFR, Papa PdM, Alvarenga MA, Dell'Aqua Junior JA, Papa FO, 2016. Strategies to improve the fertility of fresh and frozen donkey semen. Theriogenology 85 (7): 1267-1273. https://doi.org/10.1016/j.theriogenology.2015.12.010

Ortiz I, Dorado J, Acha D, Galvez MJ, Urbano M, Hidalgo M, 2015. Colloid single-layer centrifugation improves post-thaw donkey (Equus asinus) sperm quality and is related to ejaculate freezability. Reprod Fert Dev 27 (2): 332-340. https://doi.org/10.1071/RD13246

Partyka A, Bonarska-Kujawa D, Sporniak M, Strojecki M, Niżański W, 2016. Modification of membrane cholesterol and its impact on frozen-thawed chicken sperm characteristics. Zygote 24 (5): 714-723. https://doi.org/10.1017/S0967199416000022

Pradiee J, Esteso MC, Lopez-Sebastián A, Toledano-Díaz A, Castaño C, Carrizosa JA, Urrutia B, Santiago-Moreno J, 2015. Successful ultrarapid cryopreservation of wild Iberian ibex (Capra pyrenaica) spermatozoa. Theriogenology 84 (9): 1513-1522. https://doi.org/10.1016/j.theriogenology.2015.07.036

Pradiee J, Esteso MC, Castaño C, Toledano-Díaz A, Lopez-Sebastián A, Guerra R, Santiago-Moreno J, 2016. Conventional slow freezing cryopreserves mouflon spermatozoa better than vitrification. Andrologia 49 (3): 4. https://doi.org/10.1111/and.12629

Rathi R, Colenbrander B, Bevers MM, Gadella BM, 2001. Evaluation of in vitro capacitation of stallion spermatozoa 1. Biol Reprod 65 (2): 462-470. https://doi.org/10.1095/biolreprod65.2.462

Restrepo G, Varela E, Duque JE, Gómez JE, Rojas M, 2019. Freezing, vitrification, and freeze-drying of equine spermatozoa: Impact on mitochondrial membrane potential, lipid peroxidation, and DNA integrity. J Equin Vet Sci 72: 8-15. https://doi.org/10.1016/j.jevs.2018.10.006

Rota A, Panzani D, Sabatini C, Camillo F, 2012. Donkey jack (Equus asinus) semen cryopreservation: Studies of seminal parameters, post breeding inflammatory response, and fertility in donkey jennies. Theriogenology 78 (8): 1846-1854. https://doi.org/10.1016/j.theriogenology.2012.07.015

Sanchez R, Isachenko V, Petrunkina A, Risopatron J, Schulz M, Isachenko E, 2012a. Live birth after intrauterine insemination with spermatozoa from an oligoasthenozoospermic patient vitrified without permeable cryoprotectants. J Androl 33 (4): 559-562. https://doi.org/10.2164/jandrol.111.014274

Sanchez R, Risopatrón J, Schulz M, Villegas JV, Isachenko V, Isachenko E, 2012b. Vitrified sperm banks: The new aseptic technique for human spermatozoa allows cryopreservation at -86 °C. Andrologia 44 (6): 433-435. https://doi.org/10.1111/j.1439-0272.2012.01314.x

Schulz M, Risopatrón J, Matus G, Pineda E, Rojas C, Isachenko V, Isachenko E, Sánchez R, 2017. Trehalose sustains a higher post-thaw sperm motility than sucrose in vitrified human sperm. Andrologia 49 (9): 1-3. https://doi.org/10.1111/and.12757

Slabbert M, du Plessis S, Huyser C, 2015. Large volume cryoprotectant-free vitrification: An alternative to conventional cryopreservation for human spermatozoa. Andrologia 47 (5): 594-599. https://doi.org/10.1111/and.12307

Zilli L, Bianchi A, Sabbagh M, Pecoraro L, Schiavone R, Vilella S, 2018. Development of sea bream (Sparus aurata) semen vitrification protocols. Theriogenology 110: 103-109. https://doi.org/10.1016/j.theriogenology.2017.12.039




DOI: 10.5424/sjar/2019173-14153