Genetic relationships between local Brazilian goat breeds based on mtDNA D-loop region similarity

Núbia M. V. Silva, Edgard C. Pimenta-Filho, Janaina K. G. Arandas, Rosália B. N. Medeiros, Aderbal Cavalcante-Neto, Carlos Fonseca, Maria N. Ribeiro

Abstract


Aim of study: Our objective was to investigate the mitochondrial DNA of local Brazilian goats to gain insights into the genetic composition of this precious genetic resource.

Area of study: The study was developed in Brazil

Material and methods: We analyzed a hypervariable region of the mitochondrial DNA of 83 goats belonging to four local Brazilian breeds, including Canindé (CAN-RN), Moxotó (MOX-CE), Marota (MAR-PI) and Azul (AZU-PE) as well as of exotic breeds raised in different states of the Federation. Sequences related to local Brazilian goats showed a dispersed distribution throughout the median-joining network, and clustering with sequences of exotic breeds occurred in some haplotypes. The obtained sequences were analyzed and compared with different haplogroups (A, B1, B2, C, D, F, and G) available on GenBank.

Main results: The local Brazilian goat breeds showed significant diversity, with 16 (0.8240) haplotypes. Population structure analysis revealed substantial differences among breeds (p < 0.05). Mitochondrial lineage A was observed in Brazilian goats. Phylogeny showed European goats as the dominant stock for Brazilian goats, but there weare some haplotypes within haplogroup A, clustering with African and Asian haplotypes.

Research highlights: These results could be suitable for creating a strategic conservation program, potentially benefitting future breeding programs.


Keywords


Brazilian goats; Capra hircus, mitochondrial lineages; phylogenetic analyses

Full Text:

PDF HTML XML

References


Amills M, Ramírez O, Tomàs A, Badaoui B, Marmi J, Acosta J, Sànchez A, Capote J, 2009. Mitochondrial DNA diversity and origins of South and Central American goats. Anim Genet 40: 315-322. https://doi.org/10.1111/j.1365-2052.2008.01837.x

Câmara TS, Nunes JF, Diniz FM, Silva GR, de Araujo AM, 2017. Genetic diversity and relatedness between Canindé and British Alpine goat breeds in Northeastern Brazil accessed by microsatellite markers. Gen Mol Res 16 (1): gmr16019569. https://doi.org/10.4238/gmr16019569

Carvalho GMC, Paiva SR, Araújo AM, Mariante A, Blackburn HD, 2015. Genetic structure of goat breeds from Brazil and the United States: Implications for conservation and breeding programs. J Anim Sci 93: 4629-4636. https://doi.org/10.2527/jas.2015-8974

Coelho EGA, Oliveira DAA, Teixeira C, Sampaio IBM, Rodrigues S.G, Alves C, 2004. Comparação entre métodos de estocagem de DNA extraído de amostras de sangue, sêmen e pêlos e entre técnicas de extração. Arq Bras Med Veterinária e Zootec 56: 111-115. https://doi.org/10.1590/S0102-09352004000100017

Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A., Daly KG, Del Corvo M., Guldbrandtsen, B., Lenstra, J.A., et al., 2018. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 1: 50-58. https://doi.org/10.1186/s12711-018-0422-x

Deng J, Feng J, Li L, Zhong T, Wang L., Guo J, Ba G, 2018. Polymorphisms, differentiation and phylogeny of 10 Tibetan goat populations inferred from mitochondrial D-loop sequences. Mitochondrial DNA A DNA Mapp Seq Anal 29 (3): 439-445. https://doi.org/10.1080/24701394.2017.1303491

Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Ginja C, Gama LT, Martínez A, Sevane N, Martin‐Burriel I, Lanari MR., Revidatti MA, Aranguren‐Méndez JA, Bedotti DO, Ribeiro MN, Sponenberg P, Aguirre EL, et al. 2017. Genetic diversity and patterns of population structure in Creole goats from the Americas. Anim Genet 48: 315-329. https://doi.org/10.1111/age.12529

Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S, 2010. Genetic diversity in farm animals - A review. Anim Genet 41: 6-31. https://doi.org/10.1111/j.1365-2052.2010.02038.x

Hassanin A, Ropiquet A, Couloux A, Cruaud C, 2009. Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 68: 293-310. https://doi.org/10.1007/s00239-009-9208-7

IBGE, 2018. Censo Agropecuário 2006-2017. Instituto Brasileiro de Geografia e Estatística.

Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187

Lima P, Souza D, Pereira G, Torreao J, Moura J, Gomes J, Lopez Acosta J, Rey S, Ribeiro M, Pimenta Filho E, 2007. Gestao genética de raças caprinas nativas no Estado da Paraíba. Arch Zootec 56: 623-626.

Lopes DD, Fernández GP, Poli M, Moreira GRP, Gonçalves GL, 2016. Ancestry analysis of locally adapted Crespa goats from southernmost Brazil. Genet Mol Res 15: 1-16. https://doi.org/10.4238/gmr.15028324

Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P, 2001. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci 98: 5927-5932. https://doi.org/10.1073/pnas.091591198

Naderi S, Rezaei HR, Taberlet P, Zundel S, Rafat SA, Naghash HR, El-Barody, Mohamed AA, Ertugrul O, Pompanon F, Abo-Shehada M, et al., 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One 2(10): e1012. https://doi.org/10.1371/journal.pone.0001012

Othman OE, Mahfouz ER, 2016. Genetic biodiversity, affinities and phylogeny of four goat breeds in Egypt. J Biol Sci 16: 86-92. https://doi.org/10.3923/jbs.2016.86.92

Pakpahan S, Artama WT, Widayanti R, Gede Suparta I, 2016. Genetic characteristics and relationship in different goat populations of indonesia based on cytochrome B gene sequences. Asian J Anim Sci 10: 29-38. https://doi.org/10.3923/ajas.2016.29.38

Pereira L, Van Asch B, Amorim A, 2004. Standardization of nomenclature for dog mtDNA D-loop: a prerequisite for launching a Canis familiaris database. Forensic Sci Int 141: 99-108. https://doi.org/10.1016/j.forsciint.2003.12.014

Pereira ML, Lui JF, De Oliveira JV, 2005. Citogenética de jumentos da raça Marchadora Brasileira. Pesqu Agropec Bras 40: 179-182. https://doi.org/10.1590/S0100-204X2005000200012

Parma P, Feligini M, Greppi GF, Giuseppe E, 2003. Short communication: The complete nucleotide sequence of goat (Capra hircus) mitochondrial genome. DNA Seq 14 (3): 199-203. https://doi.org/10.1080/1042517031000089487

Ribeiro MN, Bruno-de-Sousa C, Martinez-Martinez A, Ginja C, Menezes MPC, Pimenta-Filho EC, Delgado JV, Gama LT, 2012. Drift across the Atlantic: Genetic differentiation and population structure in Brazilian and Portuguese native goat breeds. J Anim Breed Genet 129: 79-87. https://doi.org/10.1111/j.1439-0388.2011.00942.x

Sardina MT, Ballester M, Marmi J, Finocchiaro R, Van Kaam JBCHM, Portolano B, Folch JM, 2006. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage. Anim Genet 37: 376-378. https://doi.org/10.1111/j.1365-2052.2006.01451.x

Sevane N, Cortés O, Gama LT, Martínez A, Zaragoza P, Amills M., Bedotti DO, Bruno de Sousa C, Cañon J, Dunner S et al., 2018. Dissection of ancestral genetic contributions to Creole goat populations. Animal 12 (10): 10 pp. https://doi.org/10.1017/S1751731117003627

Simonsen RC, 1937. História econômica do Brasil: 1500-1820. Companhia Editora Nacional.

Sultana S, Mannen H, Tsuji S, 2003. Mitochondrial DNA diversity of Pakistani goats. Anim Genet 34: 417-421. https://doi.org/10.1046/j.0268-9146.2003.01040.x

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: Molecular evolutionary genetics analysis, vers. 6.0. Mol Biol Evol 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

Wang GZ, Pi XS, Ji ZB, Qin ZJ, Hou L, Chao TL, Wang JM, 2015. Investigation of the diversity and origins of Chinese dairy goats via the mitochondrial DNA D-loop. J Anim Sci 93: 949-955. https://doi.org/10.2527/jas.2014-8420




DOI: 10.5424/sjar/2019174-14682