Technical-economic viability of mechanized picking coffee (Coffea arabica L.) in up to three annual operations

Bruno R. de Oliveira, Tiago de O. Tavares, Luan P. de Oliveira, Rouverson P. da Silva, Livia C. G. Chicone

Abstract


Aim of study: Unavailability, coupled with the burden of labor for agricultural services nowadays, has made the mechanization process of harvesting of fallen coffee (Coffea arabica L.) essential. Although this operation has essential importance, it is often not monitored and executed in search of extreme quality. Considering the search for higher profits, this study aimed to analyze the performance of a coffee picker in three passes in an area in order to collect and process all the material and its economic viability.

Area of study: The experiment was carried out in July 2017 in the Brazilian Cerrado, in the municipality of Presidente Olegário, Minas Gerais, Brazil, at Fazenda Gaúcha/Café.

Material and methods: The amount of gathered coffee was equivalent to 600 kg ha−1 of processed coffee. The data from 2017 were used to analyze the economic viability of the picking operation. Treatments were distributed in split-blocks with three passes of the picking machine. The analyzed variables were picking and cleaning efficiency, picking losses, and percentage of vegetal and mineral impurities.

Main results: Coffee losses reached the minimum level in the third pass. However, the harvesting operation could be carried out at most twice in the same area from the economic point of view under the evaluated conditions.

Research highlights: Mechanized picking of coffee can be performed at most twice in the same area, providing a positive economic return.



Keywords


agricultural mechanization; picking viability; machine efficiency; coffee losses; economic analysis.

References


Alvarenga CB, Val-Júnior NA, Val VLP, Zampiroli R, Rinaldi PCN, 2018. Losses during the arabica coffee mechanical harvesting and gathering operations in the Cerrado region of Minas Gerais State. Acta Iguazu 7 (4): 35-46.

Alvares CA, Stape JL, Sentelhas PC, Moraes G, Leonardo J, Sparovek G, 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Conab, 2019. Acompanhamento da safra brasileira: café. SAFRA 5 (3): 48 pp. Companhia Nacional de Abastecimento, Brasília. https://www.conab.gov.br/component/k2/item/download/28519_1451c80af85a09013032c62c38317623

Embrapa, 2013. Sistema brasileiro de classificação de solos [Brasilian soil classification]. Embrapa-Solos, Rio de Janeiro.

Escobar-Ramírez S, Grass I, Armbrecht I, Tscharntke T, 2019. Biological control of the coffee berry borer: main natural enemies, control success, and landscape influence. Biol Control 136 (1): 103992. https://doi.org/10.1016/j.biocontrol.2019.05.011

Läderach P, Ramirez-Villegas J, Navarro-Racines C, Zelaya C, Martinez-Valle A, Jarvis A, 2017. Climate change adaptation of coffee production in space and time. Climatic Change 141 (1): 47-62. https://doi.org/10.1007/s10584-016-1788-9

Lanna GBM, Reis PR, 2012. Influência da mecanização da colheita na viabilidade econômico-financeira da cafeicultura no sul de Minas Gerais. Coffee Sci 7 (2): 110-121.

Noronha RHF, Silva RP, Chioderoli CA, Santos EP, Cassia MT, 2011. Controle estatístico aplicado ao processo de colheita mecanizada diurna e noturna de cana-de-açúcar. Bragantia 70: 931-938. https://doi.org/10.1590/S0006-87052011000400028

Pereira SP, Bartholo GF, Baliza DP, Sobreira FM, Guimarães RJ, 2011. Crescimento, produtividade e bienalidade do cafeeiro em função do espaçamento de cultivo. Pesqu Agropec Bras 46 (2): 152-160. https://doi.org/10.1590/S0100-204X2011000200006

Santinato F, Ruas RAA, Silva RP, Carvalho Filho A, Santinato R, 2015. Número de operações mecanizadas na colheita do café. Ciência Rural, Santa Maria 45 (10): 1809-1814. https://doi.org/10.1590/0103-8478cr20140801

Silva FD, Alves MC, Silva FC, Silva JCS, Barros MM, 2007. Desempenho operacional da recolhedora de café Dragão Eco. 33 Congr Bras de Pesquisas Cafeeiras, Lavras. Anais. Embrapa Café, Brasilia. 2 p.

Silva RP, Cassia MT, Voltarelli MA, Compagnon AM, Furlani CEA, 2013. Qualidade da colheita mecanizada de feijão (Phaseolus vulgaris) em dois sistemas de preparo do solo. Rev Ciênc Agron 44 (1): 61-69. https://doi.org/10.1590/S1806-66902013000100008

Silva RP, Votlarelli MA, Cassia MT, 2015. Controle de qualidade em operações agrícolas mecanizadas. Jaboticabal, SBEA, 244 pp.

Tavares TO, 2016. Recolhimento mecanizado do café em função do manejo do solo e da declividade do terreno. UNESP, Faculdade de Ciências Agrárias e Veterinárias, Dissertação de Mestrado em Agronomia. Jaboticabal, 58 pp.

Tavares TO, Santinato F, Silva RP, Voltarelli MA, Paixão CSS, Santinato R, 2015. Qualidade do recolhimento mecanizado do café. Coffee Sci, Lavras 10 (4): 455-463.

Tavares TO, Borba MAP, Oliveira BR, Silva RP, Voltarelli MA, Ormond ATS, 2018. Effect of soil management practices on the sweeping operation during coffee harvest. Agron J 110 (5): 1689-1696. https://doi.org/10.2134/agronj2017.10.0598

Toledo AD, Tabile RA, Silva RP, Furlani CE, Magalhães SC, Costa BO, 2008. Caracterização das perdas e distribuição de cobertura vegetal em colheita mecanizada de soja. Engenh Agríc 28 (4): 710-719. https://doi.org/10.1590/S0100-69162008000400011

Voltarelli MA, Silva RP, Rosalen DL, Zerbato C, Cassia MT, 2013. Quality of performance of the operation of sugarcane mechanized planting in day and night shifts. Aust J Crop Sci 7: 1396-1406.

Zerbato C, Cavichioli FA, Raveli MB, Marrafon M, Silva RP, 2013. Controle estatístico de processo aplicado à colheita mecanizada de milho. Eng Agr 21 (3): 261-270. https://doi.org/10.13083/1414-3984.v21n03a05

Zerbato C, Furlani CEA, Oliveira MFD, Voltarelli MA, Tavares TO, Carneiro FM, 2019. Quality of mechanical peanut sowing and digging using autopilot. Rev Bras Eng Agr Amb 23 (8): 630-637. https://doi.org/10.1590/1807-1929/agriambi.v23n8p630-637




DOI: 10.5424/sjar/2020181-14885