Assessing localization impact on land values: a spatial hedonic study

Natividad Guadalajara, María-Teresa Caballer, Jose M. Osca

Abstract


Aim of study: To obtain spatial land valuing models using Geographic Information Systems (GIS), which collect spatial autocorrelation and improve the conventional models estimated by OLS (Ordinary Least Squares) to determine and quantify the factors explaining these values.

Area of study: The Spanish Autonomous Community of Aragón, Spain.

Material and methods: The mean land values per municipality and the land uses published by the Aragonese Statistics Institute were used, as well as the geographic, agricultural, demographic, economic and orographic characteristics of these municipalities. The Spatial Lag Model and the Spatial Error Model were compared with OLS in general terms and for uses.

Main results: The statistics (R2, log likelihood, Akaike’s information criterion, Schwarz’s criterion) demonstrated that spatial models always outperformed conventional models. The tests based on the Lagrange Multiplier and Likelihood Ratio tests were significant at 99%. The importance of both agricultural and non-agricultural factors for determining the arable land value was confirmed. The land value increased with irrigation availability (by a mean of 2.2-fold for the set of all land uses), plot size (by 5.7% for each 1 ha increase), population size, income and location in nature reserves (11.02-12.89%).

Research highlights: Results indicate the need to develop spatial models when modeling land prices by implementing GIS.


Keywords


geographic information system; hedonic regression; land use; land valuation; ordinary least squares; spatial autocorrelation; spatial econometric model

Full Text:

PDF HTML XML

References


Anselin L, 1988. Spatial econometrics: methods and models. Kluwer Acad Publ, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-015-7799-1

Anselin L, Rey S, 1991. Properties of tests for spatial dependence in linear regression models. Geogr Anal 23: 112-131. https://doi.org/10.1111/j.1538-4632.1991.tb00228.x

Bastian CT, McLeod DM, Germino MJ, Reiners WA, Blasko BJ, 2002. Environmental amenities and arable land values: a hedonic model using geographic information systems data. Ecol Econ 40: 337-349. https://doi.org/10.1016/S0921-8009(01)00278-6

BOE, 2011. Royal decree 1492/2011, of 24 October, by which the Regulation about the Land Valuing Act is passed. Boletín Oficial del Estado (Spain) No. 270, 09/11/11.

Caballer V, 1973. Una contribución a los métodos estadísticos de valoración y su aplicación en el levante español. Rev Estud Agrosoc 85: 79-92.

Caballer V, Guadalajara N, 2005. Modelos econométricos de valoración de la tierra de uso agrícola Una aplicación al Estado español. Estud Agrosoc 205: 13-38.

Calatrava J, Cañero R, 2000. Valoración de fincas olivareras de secano mediante métodos econométricos. Invest Agrar: Prod Prote Veg 15 (1-2): 92-102.

Can A, 1992. Specification and estimation of hedonic housing price models. Reg Sci Urban Econ 22 (3): 453-474. https://doi.org/10.1016/0166-0462(92)90039-4

Chi G, Zhu J, 2008. Spatial regression models for demographic analysis. Popul Res Policy Rev 27: 17-42. https://doi.org/10.1007/s11113-007-9051-8

Demetriou D, 2016. The assessment of land valuation in land consolidation schemes: the need for a new land valuation framework. Land Use Policy 54: 487-498. https://doi.org/10.1016/j.landusepol.2016.03.008

Dubin RA, 1998. Estimation of regression coefficients in the presence of spatially autocorrelated error terms. Rev Econ Stat 70(3): 466-474. https://doi.org/10.2307/1926785

García T, Grande I, 2003. A model for the valuation of farmland in Spain: The case for the use of multivariate analysis. J Prop Invest Finance 21 (2): 136-153. https://doi.org/10.1108/14635780310469111

Gracia A, Pérez y Pérez L, Sanjuan AI, Barreiro J, 2004. Análisis hedónico de los precios de la tierra en la provincia de Zaragoza. Rev Esp Estud Agrosoc Pesqu 202: 51-69.

Guadalajara N, 2018. Métodos de valoración inmobiliaria, 2ª ed. Ed. Mundi-Prensa. 114 pp.

Guadalajara N, López MA, 2018. The inflated valuation problem in Valencia, Spain, and implications for firm size. Int J Strateg Prop Manag 22: 300-313. https://doi.org/10.3846/ijspm.2018.4348

Gujarati DN, 2003. Basic econometrics, 4th ed. McGraw-Hill.

Haas GC, 1922. A statistical analysis of farm sales in blue earth county, Minnesota, as a basis for farm land appraisal. Masters Thesis, University of Minnesota, MN, USA.

Huang H, Miller GY, Sherrick BJ, Gómez MI, 2006. Factors influencing Illinois farmland values. Am J Agr Econ 88 (2): 458-470. https://doi.org/10.1111/j.1467-8276.2006.00871.x

Kim CW, Phipps TT, Anselin L, 2003. Measuring the benefits of air quality improvement: A spatial hedonic approach. J Environ Econ Manag 45 (1): 24-39. https://doi.org/10.1016/S0095-0696(02)00013-X

Lee G, Cho D, Kim K, 2016. The modifiable areal unit problem in hedonic house-price models. Urban Geogr 37 (2): 223-245. https://doi.org/10.1080/02723638.2015.1057397

Levers C, Schneider M, Prishchepov AV, Estel S, Kuemmerle T, 2018. Spatial variation in determinants of arable land abandonment. Sci Total Environ 644: 95-111. https://doi.org/10.1016/j.scitotenv.2018.06.326

Maddison D, 2000. A hedonic analysis of arable land prices in England and Wales. Eur Rev Agric Econ 27 (4): 519-532. https://doi.org/10.1093/erae/27.4.519

Maddison D, 2009. A spatio-temporal model of farmland values. J Agr Econ 60 (1): 171-189. https://doi.org/10.1111/j.1477-9552.2008.00182.x

Mallios Z, Papageorgiou A, Latinopoulos D, Latinopoulos P, 2009. Spatial hedonic pricing models for the valuation of irrigation water. Global NEST J 11 (4): 575-582. https://doi.org/10.30955/gnj.000500

Marqués-Pérez I, Mora-Navarro G, Pérez-Salas JL, Velilla-Torres J, Femenía-Ribera C, 2018. Arable land values using Geographic Information Systems: design location model and tools for information available by geoportal. Application to a Spanish agricultural area. Survey Rev 50 (363): 545-554. https://doi.org/10.1080/00396265.2017.1350342

Militino AF, Ugarte MD, Garcia-Reinaldos L, 2004. Alternative models for describing spatial dependence among dwelling selling prices. J Real Estate Finance Econ 29 (2): 193-209. https://doi.org/10.1023/B:REAL.0000035310.20223.e9

Moran P, 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23. https://doi.org/10.1093/biomet/37.1-2.17

Pace RK, Gilley OW, 1997. Using the spatial configuration of the data to improve estimation. J Real Estate Finance Econ 14 (3): 333-340. https://doi.org/10.1023/A:1007762613901

Patton M, McErlean S, 2003. Spatial effects within the arable land market in Northern Ireland. J Agr Econ 54 (1): 35-54. https://doi.org/10.1111/j.1477-9552.2003.tb00047.x

Segura B, Marqués I, 2018. Análisis espacial de los precios del suelo de uso agrario. Econ Agrar Recurs Nat 18 (1): 135-159. https://doi.org/10.7201/earn.2018.01.06

Seo SN, 2008. Assessing relative performance of econometrics models in measuring the impact of climate change on agriculture using spatial autoregression. Rev Reg Stud 38 (2): 195-209.

Shi YJ, Phipps TT, Colyer D, 1997. Arable land values under urbanizing influences. Land Econ 73 (1): 90-100. https://doi.org/10.2307/3147079

Taltavull P, López E, Juárez F, 2016. Ripple effect on housing prices. Evidence from tourist markets in Alicante, Spain. Int J Strateg Prop Manag 21 (1): 1-14. https://doi.org/10.3846/1648715X.2016.1241192

Tobler WR, 1970. A computer movie simulating urban growth in the Detroit region. Econ Geogr 46 (2): 234-240. https://doi.org/10.2307/143141

Uberti MS, Antunes MAH, Debiasi P, Tassinari W, 2018. Mass appraisal of farmland using classical econometrics and spatial modeling. Land Use Policy 72: 161-170. https://doi.org/10.1016/j.landusepol.2017.12.044

Xu F, Mittelhammer RC, Barkley PW, 1993. Measuring the contributions or site characteristics to the value of arable land. Land Econ 69 (4): 356-369. https://doi.org/10.2307/3146453

Zygmunt R, Gluszak M, 2015. Forest proximity impact on undeveloped land values: A spatial hedonic study. For Policy Econ 50: 82-89. https://doi.org/10.1016/j.forpol.2014.07.005




DOI: 10.5424/sjar/2019173-14961