Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies

  • Angjelina Belaj IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Raúl de la Rosa IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Lorenzo León IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Clara Gabaldón-Leal IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Cristina Santos IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Rafael Porras IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • María de la Cruz-Blanco IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba
  • Ignacio J. Lorite IFAPA, Centro “Alameda del Obispo”. Avda. Menéndez Pidal s/n, 14004 Córdoba http://orcid.org/0000-0002-0833-9362
Keywords: Olea europaea L., ex situ collections, simulation models, crop phenology, adaptation measures

Abstract

Aim of study: Crop phenology is a critical component in the identification of impacts of climate change. Then, the assessment of germplasm collections provides relevant information for cultivar selection and breeding related to phenology, being the base for identifying adaptation strategies to climate change.

Area of study: The World Olive Germplasm Bank located at IFAPA Centre “Alameda del Obispo” (WOGB-IFAPA) in Cordoba (Southern Spain) was considered for the study.

Material and methods: Data gathered for nine years on flowering and ripening time of olive cultivars from WOGB-IFAPA were evaluated. Thus, full flowering date (FFD) for 148 cultivars and ripening date (RD) for 86 cultivars, coming from 14 olive growing countries, were considered for characterization of olive phenology and for calibration/validation of phenological models.

Main results: The characterization of WOGB-IFAPA has allowed the identification of cultivars with extreme early (‘Borriolenca’) and late (‘Ulliri i Kuq’) flowering as well as the ones with extreme early (‘Mavreya’) and late (‘Gerboui’) ripening dates. However, the very limited inter-cultivar variability, especially for FFD, resulted in a non-optimal simulation models performance. Thus, for FFD and RD the root mean square error was around 6 and 24 days, respectively. The limited inter-cultivar variability was associated to the low average temperatures registered during winter at WOGB-IFAPA generating an early accumulation of the chilling requirements, thus homogenizing FFD of all the analyzed cultivars.

Research highlights: The identification of cultivars with early FFD and late RD provides useful information for breeding programs and climate change studies for identifying adaptation strategies.

Downloads

Download data is not yet available.

References

Aguilera F, Ruiz L, Fornaciari M, Romano B, Galán C, Oteros J, Ben Dhiab A, Msallem M, Orlandi F, 2014. Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometerol 58: 867-876. https://doi.org/10.1007/s00484-013-0666-7

Alba V, Bisgnano V, Rotundo A, Polignano GB, Alba E, 2012. Characterization of olive germplasm by chemical oil components and morphological descriptors in Basilicata region (Italy). Plant Genet Resour-C 10 (2): 145-151. https://doi.org/10.1017/S1479262112000147

Anderson JL, Richardson EA, Kesner CD, 1986. Validation of chill unit and flower bud phenology models for 'Montmorency' sour cherry. Acta Hortic 184: 71-78. https://doi.org/10.17660/ActaHortic.1986.184.7

Andreini L, García de Cortázar-Atauri I, Chuine I, Viti R, Bartolini S, Ruiz D, Campoy JA, Legave JM, Audergon JM, Bertuizzi P, 2014. Understanding dormancy release in apricot flowers buds (Prunus armeniaca L.) using several process-based phenological models. Agric Forest Meteorol 184: 210-219. https://doi.org/10.1016/j.agrformet.2013.10.005

Atienza SG, de la Rosa R, Domínguez-García MC, Martín A, Kilian A, Belaj A, 2013. Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Res Int 54: 2045-2053. https://doi.org/10.1016/j.foodres.2013.08.015

Aybar V, De Melo-Abreu JP, Searles PS, Matias AC, Del Rio C, Caballero JM, Rousseaux MC, 2015. Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model. Span J Agric Res 13 (1): e0901. https://doi.org/10.5424/sjar/2015131-6375

Barranco D, Caballero JM, Martín A, Rallo L, Del Río C, Tous J, Trujillo I, 2005.Variedades de olivo en España. Mundiprensa, Madrid, Spain. 478 pp.

Belaj A, Dominguez-Garcia MC, Atienza SG, Martin Urdiroz N, de la Rosa R, Satovic, Z, Martin A, Kilian A, Trujillo I, Valpuesta V, del Río C, 2012. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8: 365-378. https://doi.org/10.1007/s11295-011-0447-6

Belaj A, Gurbuz M, Sikaoui H, Moukhli A, Khadari B, Mariotti R, Baldoni L, 2016. Olive genetic resources. In: The olive tree genome, compendium of plant genomes; Rugini et al. (eds.). pp: 27-54 Springer Int Publ, AG 2016. https://doi.org/10.1007/978-3-319-48887-5_3

Belaj A, de la Rosa R, Lorite IJ, Mariotti R, Cultrera NGM, Beuzón CR, González-Plaza JJ, Muñoz-Mérida A, Trelles O, Baldoni L, 2018. Usefulness of a new large set of high throughput EST-SNP markers as a tool for olive germplasm collection management. Front Plant Sci 9: 1320. https://doi.org/10.3389/fpls.2018.01320

Beltrán G, Bucheli MA, Aguilera MP, Belaj A, Jimenez A, 2016. Squalene in virgin olive oil: screening of variability in olive cultivars. Eur J Lipid Sci Tech 118: 1250-1253. https://doi.org/10.1002/ejlt.201500295

Ben Sadok I, Celton JM, Essalouh L, El Aabidine AZ, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B, 2013. QTL mapping of flowering and fruiting traits in olive. PLoS One 8 (5): e62831. https://doi.org/10.1371/journal.pone.0062831

Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, Baali-Cherif D, de Caraffa VBB, Santoni S, Vargas P, Savolainen V, 2013. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280, p 1756. https://doi.org/10.1098/rspb.2012.2833

Bodoira RM, Torres MA, Pierantozzi P, Taticchi A, Servili M, Maestri D, 2015. Oil biogenesis and antioxidant compounds from "Arauco" olive (Olea europaea L.) cultivar during fruit development and ripening. Eur J Lipid Sci Tech 117 (3): 377-388. https://doi.org/10.1002/ejlt.201400234

Bodoira RM, Torres MA, Pierantozzi P, Aguate F, Taticchi A, Servili M, Maestri D, 2016. Dynamics of fatty acids, tocopherols and phenolic compounds biogenesis during olive (Olea europaea L.) fruit ontogeny. J Am Oil Chem' Soc 93 (9): 1289-1299. https://doi.org/10.1007/s11746-016-2877-7

Caballero JM, Del Río C, Barranco D, Trujillo I, 2006. The olive world germplasm bank of Córdoba, Spain. Olea 25: 14-19.

Chuine I, Bonhomme M, Lagave JM, García de Cortázar-Atauri I, Charrier G, Lacointe A, Améglio T, 2016. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob Change Biol 22: 3444-3460. https://doi.org/10.1111/gcb.13383

De Andrés F, 1974. Estados tipo fenológicos del olivo. Comunicaciones del Servicio de Defensa contra Plagas. Estudios y experiencias 33/74. Ministerio de Agricultura, Madrid, Spain.

De Melo-Abreu JP, Barranco D, Cordeiro M, Tous J, Rogado BM, Villalobos FJ, 2004. Modeling olive flowering date using chilling for dormancy release and thermal time. Agric Forest Meteorol 125: 117-127. https://doi.org/10.1016/j.agrformet.2004.02.009

De la Rosa R, León L, Moreno I, Barranco D., Rallo L, 2008. Ripening time and fruit characteristics of advanced olive selections for oil production. Aust J Agric Res 59: 46-51. https://doi.org/10.1071/AR07142

De la Rosa R, Talhaoui N, Rouis H, Velasco L, León L, 2013. Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Res Int 54 (2): 1890-1896. https://doi.org/10.1016/j.foodres.2013.08.039

De la Rosa R, Arias-Calderón R, Velasco L, León L, 2016. Early selection for oil quality components in olive breeding progenies. Eur J Lipid Sci Technol 118: 1160-1167. https://doi.org/10.1002/ejlt.201500425

Del Río C, Vallejo MA, 2005. Banco de germoplasma mundial de olivo de Córdoba. Sistema de gestión y documentación, Vers 1. Aplicación informática, R.P.I.: CO-219-05. Fecha de registro: 7 de julio de 2005. Entidad Titular: IFAPA-CICE.

Díaz A, Martín A, Rallo P, De la Rosa R, 2007. Cross-compatibility of the genitors as the main factor for successful olive breeding crosses. J Am Soc Hortic Sci 132: 830-835. https://doi.org/10.21273/JASHS.132.6.830

Di Vaio C, Nocerino S, Paduano A, Sacchi R, 2013. Influence of some environmental factors on drupe maturation and olive oil composition. J Sci Food Agric 93 (5): 1134-1139. https://doi.org/10.1002/jsfa.5863

Dono G, Cortignani R, Dell'Unto D, Deligios P, Doro L, Lacetera N, Mula L, Pasqui M, Quaresina S, Vitali A, Roggero PP, 2016. Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agr Syst 147: 65-75. https://doi.org/10.1016/j.agsy.2016.05.013

Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G, 2017. Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by diversity arrays technology "Genotyping-by-sequencing" platform (DArTseq). Front Genet 8: 98. https://doi.org/10.3389/fgene.2017.00098

El Yaacoubi A, Malagi G, Oukabli A, Hafidi M, Legave JM, 2014. Global warming impact on floral phenology of fruit trees species in Mediterranean region. Sci Hortic 180: 243-253. https://doi.org/10.1016/j.scienta.2014.10.041

Fereres E, Soriano MA, 2007. Deficit irrigation for reducing agricultural water use. J Exp Bot 58 (2): 147-159. https://doi.org/10.1093/jxb/erl165

Fernández-Escobar R, de la Rosa R, León L, Gómez JA, Testi L, Orgaz F, Gil-Ribes JA, Quesada-Moraga E, Trapero A, 2013. Evolution and sustainability of the olive production systems. Opt Méditerr A. Sém Méditerr 106: 11-42.

Fernández i Martí A, Font i Forcada C, Socias i Company R, Rubio-Cabetas MJ, 2015. Genetic relationships and population structure of local olive tree accessions from Northeastern Spain revealed by SSR markers. Acta Physiol Plant 37: 1726. https://doi.org/10.1007/s11738-014-1726-2

Fishman S, Erez A, Couvillon GA, 1987. The temperature-dependence of dormancy breaking in plants - Mathematical analysis of a 2-step model involving a cooperative transition. J Theor Biol 124 (4): 473-483. https://doi.org/10.1016/S0022-5193(87)80221-7

Fornaciari M, Pieroni L, Ciuchi P, Romano B, 1998. A regression model for the start of the pollen season in Olea europaea. Agric Econ 37: 110-113. https://doi.org/10.1080/00173139809362652

Frías L, Hermoso M, Jimenez A, Llavero del Pozo M, Morales J, Ruano T, Uceda M, 1991. Analistas de laboratorio de almazara. Junta de Andalucía, Sevilla. 114 pp.

Gabaldón-Leal C, Lorite IJ, Mínguez MI, Lizaso JI, Dosio A, Sánchez E, Ruiz-Ramos M, 2015. Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain. Clim Res 65: 159-173. https://doi.org/10.3354/cr01311

Gabaldón-Leal C, Webber H, Otegui ME, Slafer GA, Ordoñez RA, Gaiser T, Lorite IJ, Ruiz-Ramos M, Ewert F, 2016. Modelling the impact of heat stress on maize yield formation. Field Crop Res 198: 226-237. https://doi.org/10.1016/j.fcr.2016.08.013

Gabaldón-Leal C, Ruiz-Ramos M, de la Rosa R, León L, Belaj A, Rodríguez A, Santos C, Lorite IJ 2017. Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int J Climatol 37 (S1): 940-957. https://doi.org/10.1002/joc.5048

Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo MM, 2005. Heat requirements for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49: 184-188. https://doi.org/10.1007/s00484-004-0223-5

Gavilán P, Lorite IJ, Tornero S, Berengena J, 2006. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric Water Manage 81: 257-281. https://doi.org/10.1016/j.agwat.2005.05.001

Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM, 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2ºC global warming. Glob Planet Change 68: 209-224. https://doi.org/10.1016/j.gloplacha.2009.06.001

Giorgi F, Lionello P, 2008. Climate change projections for the Mediterranean region. Glob Planet Change 63: 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005

Hannachi H, Breton C, Msallem M, Ben El Hadj S, El Gazzah M, Bervillé A, 2008. Differences between native and introduced cultivars as revealed by morphology of drupes, oil composition and SSR polymorphysm; a case study in Tunisia. Sci Hortic 116: 280-290. https://doi.org/10.1016/j.scienta.2008.01.004

Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S, Oukabli A, El Modafar C, Khadari B, 2011. Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica 139 (9): 1083-1094. https://doi.org/10.1007/s10709-011-9608-7

Klepo T, Toumi A, de la Rosa R, León L, Belaj A, 2014. Agronomic evaluation of seedlings from crosses between the main Spanish olive cultivar 'Picual' and two wild olive trees. J Hortic Sci Biotech 89: 508-512. https://doi.org/10.1080/14620316.2014.11513113

Koubouris GC, Metzidakis IT, Vasilakakis MD, 2009. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ Exp Bot 67: 209-214. https://doi.org/10.1016/j.envexpbot.2009.06.002

Lavee S, 2007. Biennial bearing in olive (Olea europaea). Ann Ser Hist Nat 17: 101-112.

Lavee S, Zohary D, 2011. The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr J Plant Sci 59: 3-13. https://doi.org/10.1560/IJPS.59.1.3

León L, Arias-Calderon R, de la Rosa R, Khadari B, Costes E, 2016. Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphytica 207: 675-684. https://doi.org/10.1007/s10681-015-1569-y

León L, de la Rosa R, Velasco L, Belaj A, 2018. Using wild olives in breeding programs: Implications on oil quality composition. Front Plant Sci 9: 232. https://doi.org/10.3389/fpls.2018.00232

Lodolini EM, Polverigiani S, Ali S, Mutawea M, Qutub M, Pierini F, Neri D, 2016. Effect of complementary irrigation on yield components and alternate bearing of a traditional olive orchard in semi-arid conditions. Span J Agric Res 14(2): e1203. https://doi.org/10.5424/sjar/2016142-8834

López Bernal A, García Tejera O, Testi L, Orgaz F, Villalobos FJ, 2018. Stomatal oscillations in olive trees: analysis and methodological implications. Tree Physiol 38: 531-542. https://doi.org/10.1093/treephys/tpx127

Lorite IJ, Gabaldón-Leal C, Ruiz-Ramos M, Belaj A, de la Rosa R, León L, Santos C, 2018. Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agr Water Manage 204: 247-261. https://doi.org/10.1016/j.agwat.2018.04.008

Morales A, Leffelaar PA Testi L, Orgaz F, Villalobos FJ, 2016. A dynamic model for potential growth of olive (Olea europaea L.) orchards. Eur J Agron 74: 93-102. https://doi.org/10.1016/j.eja.2015.12.006

Navas JF, León L, Rapoport HF, Moreno-Alías I, Medina MG, Santos C, Porras R, Lorite IJ, de la Rosa R, 2018. Flowering phenology and flower quality of cultivars 'Arbequina', 'Koroneiki' and 'Picual' in different environments of southern Spain. Acta Hortic 1229: 257-262. https://doi.org/10.17660/ActaHortic.2018.1229.39

Orlandi F, Lanari D, Romano B, Fornaciari M, 2006. New model to predict the timing of olive (Olea europaea) flowering: a case study in central Italy. New Zeal Crop Hort 34: 93-99. https://doi.org/10.1080/01140671.2006.9514392

Ozkaya MT, Cakir E, Gokbayrak Z, Ercan H, Taskin N, 2006. Morphological and molecular characterization of Derik Halhali olive (Olea europaea L.) accessions grown in Derik-Mardin province of Turkey. Sci Hortic 108: 205-209. https://doi.org/10.1016/j.scienta.2006.01.016

Parker AK, García de Cortázar-Atauri I, Van Leeuwen C, Chuine I, 2011. General phenological model to characterize the timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine R 17: 206-2016. https://doi.org/10.1111/j.1755-0238.2011.00140.x

Perez-Lopez D, Ribas F, Moriana A, Rapoport HF, de Juan A, 2008. Influence of temperature on the growth and development of olive (Olea europaea L.) trees. J Hortic Sci Biotech 83 (2): 171-176. https://doi.org/10.1080/14620316.2008.11512366

Pierantozzi P, Torres M, Lavee S, Maestri D, 2014. Vegetative and reproductive responses, oil yield and composition from olive trees (Olea europaea) under contrasting water availability during the dry winter-spring period in central Argentina. Ann Appl Bot 164(1): 116-127. https://doi.org/10.1111/aab.12086

Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M et al., 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65: 87-105. https://doi.org/10.3354/cr01322

Ponti L, Gutierrez AP, Ruti PM, Dell'aquila A, 2014. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci USA 111: 5598-5603. https://doi.org/10.1073/pnas.1314437111

Pope KS, Da Silva D, Brown PH, DeJong TM, 2014. A biologically based approach to modeling spring phenology in temperate deciduous trees. Agric Forest Meteorol 198-199: 15-23. https://doi.org/10.1016/j.agrformet.2014.07.009

Pope KS, Dose V, Da Silva D, Brown PH, DeJong TM, 2015. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. Int J Biometeorol 59: 707-715 https://doi.org/10.1007/s00484-014-0881-x

Rojo J, Salido P, Pérez-Badia R, 2015. Flower and pollen production in the 'Cornicabra' olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees 29 (4):1235-1245. https://doi.org/10.1007/s00468-015-1203-6

Ruiz-Domínguez ML, Raigón MD, Prohens J, 2013. Diversity for olive oil composition in a collection of varieties from the region of Valencia (Spain). Food Res Int 54 (2): 1941-1949. https://doi.org/10.1016/j.foodres.2013.06.023

Ruiz-Ramos M, Ferrise R, Rodríguez A, Lorite IJ, Bindi M, Carter TR, Fronzek S, Palosuo T, Pirttioja N, Baranowski P et al., 2018. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agr Syst 159: 260-274. https://doi.org/10.1016/j.agsy.2017.01.009

Sanz-Cortés F, Martínez-Calvo J, Badenes ML, Bleiholder H, Hack H, Llácer G, Meier U, 2002. Phenological growth stages of olive trees (Olea europaea). Ann Appl Biol 140: 151-157. https://doi.org/10.1111/j.1744-7348.2002.tb00167.x

Taamalli W, Geuna F, Banfi R, Bassi D, Daoud D, Zarrouk M, 2006. Agronomic and molecular analyses for the characterization of accessions in Tunisian olive germplasm collections. Electr J Biotechnol 9: 467-481. https://doi.org/10.2225/vol9-issue5-fulltext-12

Torres M, Pierantozzi P, Searles P, Rousseaux MC, García-Inza G, Miserere A, Bodoira R, Contreras C, Maestri D, 2017. Olive cultivation in the Southern Hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front Plant Sci 8: 1830. https://doi.org/10.3389/fpls.2017.01830

Trentacoste ER, Puertas CM, 2011. Preliminary characterization and morpho-agronomic evaluation of the olive germplasm collection of the Mendoza province (Argentina). Euphytica 177: 99-109. https://doi.org/10.1007/s10681-010-0270-4

Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM, 2014. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes 10 (1): 141-155. https://doi.org/10.1007/s11295-013-0671-3

Viola F, Caracciolo D, Pumo D, Noto, LV, 2013. Olive yield and future climate forcings. Procedia Environ Sci 19: 132-138. https://doi.org/10.1016/j.proenv.2013.06.015

Vuletin-Selak G, Goreta Ban S, Perica S, 2018. Onset of flowering in olive cultivars in relation to temperature. Acta Hortic 1229: 127-134. https://doi.org/10.17660/ActaHortic.2018.1229.20

Webber H, Frank E, Olesen JE, Müller C, Fronzek S, Ruane AC, Bourgault M, Martre P, Ababaei B, Bindi M, et al., 2018. Diverging importance of drought stress for maize and winter wheat in Europe. Nat Commun 9: 4249. https://doi.org/10.1038/s41467-018-06525-2

Published
2020-04-22
How to Cite
Belaj, A., de la Rosa, R., León, L., Gabaldón-Leal, C., Santos, C., Porras, R., de la Cruz-Blanco, M., & Lorite, I. J. (2020). Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 18(1), e0701. https://doi.org/10.5424/sjar/2020181-15017
Section
Plant breeding, genetics and genetic resources