Characterization of genetic resources of onion (Allium cepa L.) from the Spanish secondary centre of diversity

C. Mallor, M. Carravedo, G. Estopañan, F. Mallor

Abstract


Onions are the second most-valuable vegetable in the world. Despite its global culinary and economic significance, the knowledge of genetic diversity and resources is limited. The aim of this study was to morphologically and physico-chemically characterize eighty-six onion landraces from Spain, part of the secondary Mediterranean Centre of diversity. The evaluated traits in the bulb included: weight, shape, firmness, soluble solids content (SSC), pungency and sugars content (glucose, fructose and sucrose). The results evidenced a great variability in all the evaluated traits. Correlations were significant between pungency and SSC (r = 0.34), firmness (r = 0.32), and sucrose content (r = 0.34); between fructose and glucose contents (r = 0.79); between sucrose content and SSC (r = 0.57); between SSC and weight (r = –0.35); between fructose and sucrose contents (r = –0.22); and between weight and sucrose content (r = –0.43). the combination of cluster and discriminant analyses resulted in a classification into four clusters (95.3% fit). Cluster 1 is represented by firm, pungent and large-sized bulbs; cluster 2 consists of large-sized, mild and sweet onions; cluster 3 is constituted by pungent, high-SSC and small-sized bulbs and cluster 4 is made up by elongated bulbs. The variability in important agronomical traits found point out that these onion accessions could be candidates for future breeding programs. In addition, the clustering could make the initial plant material selection easier and the correlations among the evaluated traits found could help to establish adequate selection strategies.


Keywords


cluster analysis; firmness; genetic diversity; pungency; soluble solids; sugars

Full Text:

PDF

References


Abayomi L.A., Terry L.A., 2009. Implications of spatial and temporal changes in concentration of pyruvate and glucose in onion (Allium cepa L.) bulbs during controlled atmosphere storage. J Sci Food Agric 89, 683-687. http://dx.doi.org/10.1002/jsfa.3502

Astley D., 1990. Conservation of genetic resources. In: Onions and allied crops, Vol. 1 (Rabinowitch H.D., Brewster J.L., eds). Ed CRC Press, Boca Raton, Florida. pp. 177-198.

Astley D., Innes N.L., Van Der Meer Q.P., 1982. Genetic resources of Allium species. International Board for Plant Genetic Resources, Rome, Italy.

Boyhan G.E., Schmidt N.E., Woods F.M., Himelrick D.G., Randle W.M., 1999. Adaptation of a spectrophotometric assay for pungency in onion to a microplate reader. J Food Qual 22, 225-233. http://dx.doi.org/10.1111/j.1745-4557.1999.tb00553.x

Brewster J.L., 1994. Onions and other vegetable Alliums. CAB Intnl, Wallingford, UK.

Carravedo M., Mallor C., 2007. Variedades autóctonas de cebollas españolas. Centro de Investigación y Tecnología Agroalimentaria, Zaragoza, Spain. [In Spanish].

Casallo A., Mateo-Box J.M., Sobrino E., 1991. Variedades tradicionales de cebolla cultivadas en España. Hortofruticultura 2, 38-44. [In Spanish].

Castell V., Díez M.J., 2000. Colección de semillas de cebolla del Centro de Conservación y Mejora de la Agrodiversidad Valenciana. Monografías INIA: Serie Agrícola 8. Ministerio de Ciencia y Tecnología, Madrid, Spain.

Castell V.R., Portas C.M., 1994. Alliacea production systems in the Iberian Peninsula: facts and figures of potential interest for a worldwide R&D network. Acta Hortic 358, 43-47.

Chope G.A., Terry L.A., White P.J., 2006. Effect of controlled atmosphere storage on abscisic acid concentration and other biochemical attributes of onion bulbs. Postharvest Biol Technol 39, 233-242. http://dx.doi.org/10.1016/j.postharvbio.2005.10.010

Coolong T.W., Randle W.M., Wicker L., 2008. Structural and chemical differences in the cell wall regions in relation to scale firmness of three onion (Allium cepa L.) selections at harvest and during storage. J Sci Food Agric 88, 1277-1286. http://dx.doi.org/10.1002/jsfa.3219

Dhumal D., Datir S., Pandey R., 2007. Assessment of bulb pungency level in different Indian cultivars of onion (Allium cepa L.). Food Chem 100, 1328-1330. http://dx.doi.org/10.1016/j.foodchem.2005.11.044

Forster M.P., Rodríguez-Rodríguez E.M., Díazromero C., 2002. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador. J Agric Food Chem 50, 7586-7592. http://dx.doi.org/10.1021/jf0257796 PMid:12475275

Galmarini C.R., Goldman I.L., Havey M.J., 2001. Genetic analyses of correlated solids, flavour, and healthenhancing traits in onion (Allium cepa L.). Mol Genet Genomics 265, 543-551. http://dx.doi.org/10.1007/s004380100445 PMid:11405638

Hernández M., Rull J., Ríos D., Rodríguez E., Díaz C., 2008. Variation of the chemical composition of tomato cultivars (Lycopersicon esculentum Mill.) according to resistance against the tomato yellow leaf curl virus (TYLCV). J Food Compos Anal 88, 1882-1891.

IPGRI-ECP/GR-AVRDC, 2001. Descriptors for Allium (Allium spp.). International Plant Genetic Resources Institute, Rome, Italy; European Cooperative Programme for Crop Genetic Resources Networks (ECP/GR), Asian Vegetable Research and Development Center, Taiwan.

Jaime L., Martín-Cabrejas M.A., Molla E., López-Andreu F.J., Esteban R.M., 2001. Effect of storage on fructan and fructooligosaccharide of onion (Allium cepa L.). J Agric Food Chem 49, 982-988. http://dx.doi.org/10.1021/jf000921t PMid:11262060

Jones H.A., Mann L.K., 1963. Onions and their allies. Interscience Publ Inc, NY, USA.

Kik C., 2008. Allium genetic resources with particular reference to onion. Acta Hortic 770, 135-138.

Larsen T., Saxena A., Cramer C.S., 2009. Relatedness of bulb firmness to other attributes of New Mexico onion entries. Int J Vegetable Sci 15, 206-217. http://dx.doi.org/10.1080/19315260902727742

Lin M.W., Watson J.F., Baggett J.R., 1995. Inheritance of soluble solids and pyruvic acid content of bulb onions. J Amer Soc Hort Sci 120, 119-122.

Mallor C., Balcells M., Mallor F., Sales E., 2011. Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response to selection for low pungency. Plant Breeding. doi: 10.111/j.1439-0523.2009.01737.x.

McCallum J., Clarke A., Pither-Joyce M., Shaw M., Butler R., Brash D., Scheffer J., Sims I., Vanheusden S., Shigyo M., Havey M.J., 2006. Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112, 958-967. http://dx.doi.org/10.1007/s00122-005-0199-5 PMid:16404585

McCallum J., Havey M.J., 2006. Assessment of genetic diversity in bulb onion (Allium cepa L.) using simple sequence repeat markers (abstract). Plant and Animal Genome XIV Conference, San Diego, CA. Available on line in http://www.intl-pag.org/14/abstracts/PAG14_P130.html. [10 March, 2010].

McCallum J., Havey M.J., Shigyo M., Mcmanus M.T., 2008. Molecular approaches to characterizing and improving bulb composition in onion. Acta Hortic 770, 147-151.

McCollum G., 1968. Heritability and genetic correlations of soluble solids, bulb size and shape in white sweet Spanish onion. Can J Genet Cytol 10, 508-514.

Nass L.L., Paterniani E., 2000. Pre-breeding: a link between genetic resources and maize breeding. Sci Agric 57, 581-587. http://dx.doi.org/10.1590/S0103-90162000000300035

Pineda M., Marcó P.L.M., Rivas R., Gallignani M., Valero M., Burguera J.L., Burguera M., 2004. Pungency evaluation of onion cultivars from the Venezuelan West-Center region by flor injection analysis-UV-visible spectroscopy pyruvate determination. Talanta 64, 1299-1303. http://dx.doi.org/10.1016/j.talanta.2004.05.014 PMid:18969745

Platenius H., Knott J.E., 1941. Factors affecting onion pungency. J Agr Res 62, 371-379.

Randle W.M., 1997. Genetic and environmental effects influencing flavour in onion. Acta Hortic 433, 299-311.

Rodrigues A.S., Fogliano V., Graziani G., Mendes S., Vale A.P., Gonçalves C., 2003. Nutritional value of onion regional varieties in Northwest Portugal. Electron J Environ Agric Food Chem 2, 519-524.

Rodríguez-Galdón B., Tascón-Rodríguez C., Rodríguez-Rodríguez E., Díaz-Romero C., 2009. Fructans and major compounds in onion cultivars (Allium cepa). J Food Compos Anal 22, 25-32. http://dx.doi.org/10.1016/j.jfca.2008.07.007

Rutherford R., Whittle R., 1982. The carbohydrate composition of onions during long term cold storage. J Hortic Sci 57, 249-356.

Schwimmer S., Guadagni D.G., 1962. Relation between olfactory threshold concentration and pyruvic acid content of onion juice. J Food Sci 27, 94-97. http://dx.doi.org/10.1111/j.1365-2621.1962.tb00065.x

Schwimmer S., Weston W., 1961. Enzymatic development of pyruvic acid in onion as a measure of pungency. J Agric Food Chem 9, 301-304. http://dx.doi.org/10.1021/jf60116a018

Sinclair P.J., Blakeney A.B., Barlow E.W.R., 1995. Relationships between dry matter content, soluble solids concentrations and non-structural carbohydrate composition in the onion (Allium cepa L.). J Sci Food Agric 69, 203-209. http://dx.doi.org/10.1002/jsfa.2740690210

Vågen I.M., Slimestad R., 2008. Amount of characteristic compounds in 15 cultivars of onion (Allium cepa L.) in controlled field trials. J Sci Food Agric 88, 404-411. http://dx.doi.org/10.1002/jsfa.3100

Vavilov N.I., 1926. Origin and geography of cultivated plants. English translation by D Love (1992). Cambridge Univ Press, Cambridge, UK.

Wall M.M., Corgan J.N., 1992. Relationship between pyruvate analysis and flavour perception for onion pungency determination. HortScience 27, 1029-1030.

Yoo K.S., Pike L., Crosby K., Jones R., Leskovar D., 2006. Differences in onion pungency due to cultivars, growth environment, and bulb sizes. Sci Hortic 110, 144-149. http://dx.doi.org/10.1016/j.scienta.2006.07.006




DOI: 10.5424/sjar/20110901-149-10