Nickel and copper accumulate at low concentrations in cacao beans cotyledons and do not affect the health of chocolate consumers

Caique C. Medauar, Bismark L. Bahia, Thays M. Santana, Márcia E. S. Dos Reis, Mariana B. Soares, Carolina A. Santos, Flávia da C. Pinto, Alex A. F. de Almeida, José O. de Souza Júnior

Abstract


Aim of study: Nickel (Ni) and Copper (Cu) are essential metals for the growth and development of plants. In view of the above, the aim of this work was to quantify and correlate Ni and Cu concentrations in the leaf and the parts of the fruit [pod husk, pulp, tegument (seed coating) and cotyledons] of clonal cacao genotype PH 16.

Area of study: Cacao genotypes were collected from adult plants grown on farms located in three different climatic regions of southern Bahia, Brazil.

Material and methods: Plant material was collected in four plots of twenty farms, located under different edaphic and topographic conditions. They were subjected to chemical analysis and later to statistical analyses.

Main results: There was high variability of Ni and Cu concentrations in all evaluated plant materials. Leaf, pulp, and tegument were the plant materials that accumulated more Ni. On the other hand, the greatest accumulation of Cu occurred in the tegument and in the pod husk, while in the cotyledons there was little accumulation of these metals. The concentrations of Ni were influenced by the three climatic regions, a fact not observed for Cu, except at the leaf level. There was interdependence between the accumulation of Ni in the leaves and in the different parts of the fruit, a fact not observed for Cu.

Research highlights: Since Ni and Cu accumulated in low concentrations in the cacao beans cotyledons, raw material for the manufacture of chocolate and other food products, these metallic elements do not affect the consumers' health.


Keywords


Theobroma cacao L.; fruit; heavy metals; toxicity

Full Text:

PDF HTML XML

References


Aikpokpodion PE, Lajide L, Aiyesanmi AF, 2013. Characterization of heavy metal fractions in agricultural soils using sequential extraction technique. World J Agr Sci 9: 45-52.

Almeida CMVC, Dias LAS, Silva AP, 2009. Caracterização agronômica de acessos de cacau. Pesqu Agropec Bras 44: 368-373. https://doi.org/10.1590/S0100-204X2009000400006

Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J, 2014. Metals species involved in long distance metal transport in plants. Front Plant Sci 5: 105. https://doi.org/10.3389/fpls.2014.00105

Arévalo-Gardini E, Obando-Cerpa M, Zúñiga-Cernades L, Arévalo-Hernández C, Baligar V, He Z, 2016. Metales pesados en suelos de plantaciones de cacao (Theobroma cacao L.) en tres regiones del Perú. Ecologia Aplicada 15: 81-89. https://doi.org/10.21704/rea.v15i2.747

Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, He ZL, 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci Total Envir 605-606: 792-800. https://doi.org/10.1016/j.scitotenv.2017.06.122

Arévalo-Hernández CO, Pinto FC, Souza Júnior JO, Paiva AQ, Baligar VC, 2019. Variability and correlation of physical attributes of soils cultivated with cacao trees in two climate zones in Southern Bahia, Brazil. Agrofor Syst 93: 793-802. https://doi.org/10.1007/s10457-017-0176-4

Benatti MR, Yookongkaew N, Meetam M, Guo WJ, Punyasuk N, Abuqamar S et al., 2014. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytologist 202: 940-951. https://doi.org/10.1111/nph.12718

Bertoldi D, Barbero A, Carmin F, Caligiane A, Larcher R, 2016. Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control 65: 46-53. https://doi.org/10.1016/j.foodcont.2016.01.013

Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK, 2004. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265: 225-242. https://doi.org/10.1007/s11104-005-0974-8

Ceko MJ, Aitken JB, Harris HH, 2014. Speciation of copper in a range of food types by X-ray absorption spectroscopy. Food Chem 164: 50-54. https://doi.org/10.1016/j.foodchem.2014.05.018

Chaves LHG, Mesquita, EF, Araujo DL, França CP, 2010. Crescimento, distribuição e acúmulo de cobre e zinco em plantas de pinhão-manso. Rev Ciênc Agron 41: 167-176. https://doi.org/10.1590/S1806-66902010000200001

Clancy H, Costa M, 2012. Nickel: a pervasive carcinogen, Future Oncology 8: 1507-1509. https://doi.org/10.2217/fon.12.154

Clemens S, Deinlein U, Ahmadi H, Höreth S, Uraguchi S, 2013. Nicotianamine is a major player in plant Zn homeostasis. Biometals 26: 623-632. https://doi.org/10.1007/s10534-013-9643-1

Cressie N, 1991. Statistics for spatial data. John Wiley, NY.

Deng THB, Tang YT, van der Ent A, Sterckeman T, Echevarria G, Morel JL et al., 2016. Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404: 35-45. https://doi.org/10.1007/s11104-016-2825-1

Deng THB, van der Ent A, Tang YT, Sterckeman T, Echevarria G, Morel JL et al., 2017. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423: 1-11. https://doi.org/10.1007/s11104-017-3539-8

EMBRAPA, 2000. Método de análise de tecidos vegetais (Circular Técnica, 6). Empresa Brasileira de Pesquisa Agropecuária, Embrapa Solos, Rio de Janeiro. 41 pp.

Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng T, Tang Y et al., 2015. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423: 24-35. https://doi.org/10.1016/j.epsl.2015.04.018

Ferrante M, Pappalardo M, Ferrito V, Pulvirenti V, Fruciano C, Grasso A et al., 2017. Bioaccumulation of metals and biomarkers of environmental stress in Parablennius sanguinolentus (Pallas, 1814) sampled along the Italian coast. Mar Pollut Bull 122: 288-296. https://doi.org/10.1016/j.marpolbul.2017.06.060

Fismes J, Echevarria G, Leclerc-Cessac E, Morel JL, 2005. Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination. J Environ Qual 34: 1497-1507. https://doi.org/10.2134/jeq2004.0274

Grembecka M, Szefer P, 2012. Differentiation of confectionery products based on mineral composition. Food Anal Meth 5: 250-259. https://doi.org/10.1007/s12161-011-9234-0

Groeber S, Przybyłowicz W, Echevarria G, Montarges-Pelletier E, Barnabas A, Mesjasz-Przybyłowicz J, 2015.Fate of nickel and calcium in seedlings of the hyperaccumulator Berkheya coddii during germination. Biol Plantarum 59: 560-569. https://doi.org/10.1007/s10535-015-0527-9

ICCO, 2012. The world cocoa economy. International Cocoa Organization, London, 32 pp.

Kabata-Pendias A (ed), 2011. Trace elements in soil and plants, 4th edn. CRC Press, Taylor & Francis Group, NY. https://doi.org/10.1201/b10158

Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC, 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635-638. https://doi.org/10.1038/379635a0

Leite PB, Bispo ES, Santana LRR, 2013. Sensory profiles of chocolates produced from cocoa cultivars resistant to Moniliophtora Perniciosa. Rev Bras Fruticult 35: 594-602. https://doi.org/10.1590/S0100-29452013000200031

Marschner P, 2012. Marschner's mineral nutrition of higher plants, 3rd ed. London Academic Press.

Massoura ST, Echevarria G, Becquer T, Ghanbaja, J, Leclerc-Cessac E, Morel JL, 2006. Control of nickel availability by nicquel bearing minerals in natural and anthropogenic soils. Geoderma 136: 28-37. https://doi.org/10.1016/j.geoderma.2006.01.008

Matta GN, 2016. Extração de níquel contido em rochas ultramáficas do depósito de Santa Rita (Bahia). Dissertação (Mestrado). Universidade Federal da Bahia. Salvador.

Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A, 2016. Extreme nickel hyper accumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209: 1513-1526. https://doi.org/10.1111/nph.13712

Moreira LS, 2016. Desenvolvimento de metodologia de preparo de amostra para determinação de Cu, Fe e Mn em castanha de caju (Anacardium occidentale L.) por ICP OES. Dissertação (Mestrado em Química). Universidade Estadual de Santa Cruz. Ilhéus.

Page V, Feller U, 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96: 425-434. https://doi.org/10.1093/aob/mci189

Page V, Weisskopf L, Feller U, 2006. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171: 329-341. https://doi.org/10.1111/j.1469-8137.2006.01756.x

Pich A, Scholz G, 1996. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47: 41-47. https://doi.org/10.1093/jxb/47.1.41

Printz B, Lutts S, Hausman JF, Sergeant K, 2016. Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7: 601. https://doi.org/10.3389/fpls.2016.00601

Reeves RD, Baker AJM, Borhidi A, Berazain R, 1996. Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133: 217-224. https://doi.org/10.1111/j.1469-8137.1996.tb01888.x

Riesen O, Feller U, 2005. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28: 421-430. https://doi.org/10.1081/PLN-200049153

Scheiber IF, Mercer JFB, Dringen R, 2014. Metabolism and functions of copper in brain. Progr Neurobiol 116: 33-57. https://doi.org/10.1016/j.pneurobio.2014.01.002

SEI, 2007. Mapa de tipologia climática - Segundo Thornthwaite do Estado da Bahia. Superintendência de Estudos Econômicos e Sociais da Bahia. http://www.sei.ba.gov.br/site/geoambientais/cartogramas/pdf/carto_tip_clim.pdf [25 Aug 2018].

Souza Júnior JO, Ker JC, Mello JWV, Cruz CD, 1999. Produtividade do cacaueiro em função de características do solo. II. Características físico-morfológicas e alguns elementos extraídos pelo ataque sulfúrico. Rev Bras Ciênc Solo 23: 873-880. https://doi.org/10.1590/S0100-06831999000400014

Souza Júnior JO, Menezes AA, Sodré GA, Gattward JN, Dantas PAS, Cruz Neto RO, 2012. Diagnose foliar na cultura do cacau. In: Nutrição de plantas: diagnose foliar em frutíferas; Prado RM (ed). FCAV/FAPESP, Jaboticabal. Pp: 443-476.

Souza Júnior JO, Marrocos PCL, Neves JCL, 2018. Diagnose nutricional para o cacaueiro, in Cacau: cultivo, pesquisa e inovação; Souza Júnior JO (ed), Editus, Ilhéus, pp: 305-332.

Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT et al., 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175: 641-654. https://doi.org/10.1111/j.1469-8137.2007.02134.x

van der Ent A, Mulligan D, 2015. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41: 396-408. https://doi.org/10.1007/s10886-015-0573-y

Veloso JLM, Santana CJL, 2000. Cobre residual em solos de plantações de cacau (Theobroma cacao L.). Agrotrópica 12: 75-80.

Vriesmann LC, Amboni RDMC, Petkowicz CLO, 2011. Cacao pod husks (Theobroma cacao L.): composition and hot-water-soluble pectins. Ind Crops Prod 34: 1173-1181. https://doi.org/10.1016/j.indcrop.2011.04.004

Wan X, Schicht O, Freisinger E, 2013. Copper (I) coordination by two plant metallothioneins. Zeitschrift fur Anorganische und Allgemeine Chemie 639: 1365-1369. https://doi.org/10.1002/zaac.201300096

Warrick AW, Nielsen DR, 1980. Spatial variability of soil physical properties in the field. In: Applications of soil physics; Hillel D (ed). Academic Press, NY, pp: 319-344. https://doi.org/10.1016/B978-0-12-348580-9.50018-3

Yruela I, 2009. Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36: 409-430. https://doi.org/10.1071/FP08288

Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot MO, 2014. Selection and combustion of Nihyper accumulators for the phytomining process. Int J Phytoremed 16: 1058-1072. https://doi.org/10.1080/15226514.2013.810585




DOI: 10.5424/sjar/2019174-15621