Short communication: Molecular detection of honeybee viruses in Ecuador

  • María E. Bravi Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, Laboratorio de Virología (LAVIR), Calle 60 y 118 s/n, 1900 La Plata (Buenos Aires) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Jorge Avalos Programa Nacional Sanitario Apícola, AGROCALIDAD, Av. Amazonas y Eloy Alfara, Quito
  • Hugo Rosero Programa Nacional Sanitario Apícola, AGROCALIDAD, Av. Amazonas y Eloy Alfara, Quito
  • Gerald Maldonado Programa Nacional Sanitario Apícola, AGROCALIDAD, Av. Amazonas y Eloy Alfara, Quito
  • Francisco J. Reynaldi Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, Laboratorio de Virología (LAVIR), Calle 60 y 118 s/n, 1900 La Plata (Buenos Aires) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) http://orcid.org/0000-0002-1531-4905
  • María L. Genchi-García Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, Laboratorio de Virología (LAVIR), Calle 60 y 118 s/n, 1900 La Plata (Buenos Aires) Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA)
Keywords: ABPV, DWV, SBV, BQCV, Multiplex-PCR, Apis mellifera

Abstract

Aim of study: The honeybee, Apis mellifera, is one of the most important pollinators in the world. Apicultural activity and pollination services have been affected by the decline in the honeybee population, which may be due to the interaction of multiple risk factors, such as changes in agricultural production, use of pesticides and presence of pathogens. Viruses, in particular, are suspected to be drivers of colony mortality. In this scenario, the aim of this study was to determine the presence of honeybee viruses (IAPV, DWV, SBV, ABPV, BQCV, CBPV) in A. mellifera populations using a RT-mPCR assay.

Area of study: Apiaries were situated in Pichincha, Ecuador.

Material and methods: Samples were collected from seventeen apiaries that exhibited mortality but without specific clinical signs. Each sample comprised 15 individuals. After RNA extraction, a multiplex PCR analysis was performed for presence of six viruses (IAPV, DWV, SBV, ABPV, BQCV, CBPV).

Main results: Four of the viruses (ABPV, DWV, BQCV and SBV) were found in co-infections in these colonies, with ABPV and SBV also being found in simple infections.

Research highlights: To our knowledge, this is the first molecular detection of BQCV and SBV in Ecuador. These findings suggest that some of the above viruses could be involved in weakening these colonies.

Downloads

Download data is not yet available.

Author Biography

María E. Bravi, Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, Laboratorio de Virología (LAVIR), Calle 60 y 118 s/n, 1900 La Plata (Buenos Aires) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
LAVIR, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata.

References

Aizen MA, Harder LD, 2009. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19: 915-918. https://doi.org/10.1016/j.cub.2009.03.071

Antúnez K, D'Alessandro B, Corbella E, Ramallo G, Zunino P, 2006. Honeybee viruses in Uruguay. J Invertebr Pathol 93 (1): 67-70. https://doi.org/10.1016/j.jip.2006.05.009

Avalos J, Rosero H, Maldonado G, Reynaldi F, 2019. Honey bee louse (Braula schmitzi) as a honey bee virus vector? J Apic Res 58: 427-429. https://doi.org/10.1080/00218839.2019.1565726

Brutscher LM, McMenamin AJ, Flenniken ML, 2016. The Buzz about honey bee viruses. PLoS Pathog 12 (8): e1005757. https://doi.org/10.1371/journal.ppat.1005757

Chen YP, Siede R, 2007. Honey bee viruses. Adv Virus Res 70: 33-80. https://doi.org/10.1016/S0065-3527(07)70002-7

Dainat B, vanEngelsdorp D, Neumann P, 2012. Colony collapse disorder in Europe. Environ Microbiol Reports 4 (1): 123-125. https://doi.org/10.1111/j.1758-2229.2011.00312.x

Ellis JD, Evans JD, Pettis J, 2010. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J Apic Res 49 (1): 134-136. https://doi.org/10.3896/IBRA.1.49.1.30

Freiberg M, De Jong D, Message D, Cox-Foster D, 2012. First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil. Genet Mol Res 11 (3): 3310-3314. https://doi.org/10.4238/2012.September.12.14

García MLG, Plischuk S, Bravi CM, Reynaldi FJ, 2019. An overview on honeybee colony losses in Buenos Aires Province, Argentina. Sociobiology 66 (1): 43-48. https://doi.org/10.13102/sociobiology.v66i1.3366

Genersch E, Aubet M, 2010. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41: 54. https://doi.org/10.1051/vetres/2010027

Meana A, Llorens-Picher M, Euba A, Bernal JL, Bernal J, Garcia-Chao M, Dagnac T, Castro-Hermida JA, Gonzalez-Porto AV, Higes M, Martin-Hernández R, 2017. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span J Agric Res 15 (1): e0501. https://doi.org/10.5424/sjar/2017151-9652

Natsopoulou M, McMahon D, Doublet V, Frey E, Rosenkranz P, Paxton R, 2017. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Sci Rep 7: 5242. https://doi.org/10.1038/s41598-017-05596-3

Negri P, MaggI M, Ramirez L, Szawarski N, De Feudis L, Lamattina L, Eguaras M, 2016. Cellular immunity in Apis mellifera: studying hemocytes brings light about bees skills to confront threats. Apidologie 47: 379-388. https://doi.org/10.1007/s13592-015-0418-2

Neumann P, Carreck NL, 2010. Honey bee colony losses. J Apic Res 49 (1): 1-6. https://doi.org/10.3896/IBRA.1.49.1.01

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE, 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25 (6): 345-353. https://doi.org/10.1016/j.tree.2010.01.007

Remnant EJ, Shi M, Buchmann G, Blacquière T, Holmes EC, Beekman M, Ashe A, 2017. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol 91: e00158-17. https://doi.org/10.1128/JVI.00158-17

Reynaldi FJ, Sguazza GH, Pecoraro MR, Tizzano MA, Galosi CM, 2010. First report of viral infections that affect Argentinean honey bee. Environ Microb Rep 2: 749-751. https://doi.org/10.1111/j.1758-2229.2010.00173.x

Ribière M, Olivier V, Blanchard P, 2010. Chronic bee paralysis: a disease and a virus like no other? J Invertebr Pathol 103: S120-131. https://doi.org/10.1016/j.jip.2009.06.013

Riveros G, Arismendi N, Zapata N, Smagghe G, Rodríguez M, Gerding M, Vargas M, 2018. A scientific note on first detection of Kashmir bee virus in Apis mellifera (Hymenoptera: Apidae) in South America. Apidologie 49: 220. https://doi.org/10.1007/s13592-017-0545-z

Rodríguez M, Vargas M, Gerding M, Navarro H, Antúnez K, 2012. Viral infection and Nosema ceranae in honey bees (Apis mellifera) in Chile. J Apic Res 51 (3): 285-287. https://doi.org/10.3896/IBRA.1.51.3.12

Sguazza GH, Reynaldi FJ, Galosi CM, Pecoraro MR, 2013. Simultaneous detection of bee viruses by multiplex PCR. J Virol Methods 194: 1-2. https://doi.org/10.1016/j.jviromet.2013.08.003

Staveley JP, Law SA, Fairbrother A, Menzie CA, 2014. A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess 20: 566-591. https://doi.org/10.1080/10807039.2013.831263

Todd JH, De Miranda JR, Ball BV, 2007. Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor. Apidologie 38: 354-367. https://doi.org/10.1051/apido:2007021

Yañez O, Tejada G, Neumann P, 2014. First detection of viruses in africanized honey bees from Peru. Virologica Sinica 29 (5): 321-323. https://doi.org/10.1007/s12250-014-3510-2

Published
2020-04-22
How to Cite
Bravi, M. E., Avalos, J., Rosero, H., Maldonado, G., Reynaldi, F. J., & Genchi-García, M. L. (2020). Short communication: Molecular detection of honeybee viruses in Ecuador. Spanish Journal of Agricultural Research, 18(1), e05SC02. https://doi.org/10.5424/sjar/2020181-15779
Section
Animal health and welfare